The performance of three alkaline direct ethanol fuel cells (ADEFCs) is investigated. All three use identical anode and cathode electrodes, but one uses an anion exchange membrane (AEM) and the other two use nonpermselective porous separators. Ethanol was chosen as the fuel because of its low toxicity, low carbon footage, and market readiness. A direct comparison between ADEFCs with and without AEM is reported. The performance of each cell is studied under different operation conditions of temperature, reactants flow rate, ethanol and potassium hydroxide (KOH) concentrations. The results show that with low cost porous separator, the ADEFC can reach similar power output as those using expensive AEMs. With 1 M ethanol and 1 M KOH aqueous solution, the maximum power densities of 26.04 mW/cm2 and 24.0 mW/cm2 are achieved for the ADEFC employing AEM and porous separator, respectively. This proves the feasibility of replacing AEM with nonpermselective separators. The results suggest that improving the cathode structure in order to provide a better oxygen supply is the key factor to enhance the performance of an AEM free ADEFC.

References

References
1.
Varcoe
,
J. R.
, and
Slade
,
R. C. T.
,
2005
, “
Prospects for Alkaline Anion-Exchange Membranes in Low Temperature Fuel Cells
,”
Fuel Cells
,
5
(
2
), pp.
187
200
.10.1002/fuce.200400045
2.
Maurya
,
S.
,
Shin
,
S.-H.
,
Kim
,
M.-K.
,
Yun
,
S.-H.
, and
Moon
,
S.-H.
,
2013
, “
Stability of Composite Anion Exchange Membranes With Various Functional Groups and Their Performance for Energy Conversion
,”
J. Membr. Sci.
,
443
, pp.
28
35
.10.1016/j.memsci.2013.04.035
3.
Wang
,
Y. J.
,
Qiao
,
J. L.
,
Baker
,
R.
, and
Zhang
,
J. J.
,
2013
, “
Alkaline Polymer Electrolyte Membranes for Fuel Cell Applications
,”
Chem. Soc. Rev.
,
42
(
13
), pp.
5768
5787
.10.1039/c3cs60053j
4.
Yang
,
Y.
,
2010
, “
Portable Power Fuel Cell Manufacturing Cost Analyses
,” Austin Power Engineering LLC, San Antonio, TX, Technical Report No. D0028.YY.
5.
Yang
,
Y.
,
2011
, “
Cost Analysis of Direct Hydrogen Pem Fuel Cell/Lithium Ion Battery Hybrid Power Source for Transportation
,” Austin Power Engineering LLC, Orlando, FL, Technical Report No. D0128.YY.
6.
An
,
L.
,
Zhao
,
T. S.
,
Li
,
Y.
, and
Wu
,
Q.
,
2012
, “
Charge Carriers in Alkaline Direct Oxidation Fuel Cells
,”
Energy Environ. Sci.
,
5
(
6
), pp.
7536
7538
.10.1039/c2ee21734a
7.
An
,
L.
,
Zhao
,
T. S.
,
Wu
,
Q. X.
, and
Zeng
,
L.
,
2012
, “
Comparison of Different Types of Membrane in Alkaline Direct Ethanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14536
14542
.10.1016/j.ijhydene.2012.06.105
8.
Yang
,
L. X.
, and
Jang
,
B. Z.
,
2006
, “
Dissolved Fuel Alkaline Fuel Cell
,” Patent Pub. No.: US 2006/0078764 A1.
9.
Liu
,
Y.
,
Ma
,
J.
, and
Lai
,
J.
,
2009
, “
Study of LaCoO3 as a Cathode Catalyst for a Membraneless Direct Borohydride Fuel Cell
,”
J. Alloys Compd.
,
488
(
1
), pp.
204
207
.10.1016/j.jallcom.2009.08.079
10.
Ma
,
J.
,
Liu
,
Y.
,
Yan
,
Y.
, and
Zhang
,
P.
,
2008
, “
A Membraneless Direct Borohydride Fuel Cell Using LaNiO3-Catalysed Cathode
,”
Fuel Cells
,
8
(
6
), pp.
394
398
.10.1002/fuce.200800048
11.
Zhang
,
R. M.
,
Pope
,
J.
, and
Pan
,
Y. H.
,
2011
, “
Permselective Membrane-Free Direct Fuel Cell and Components Thereof
,” Patent Pub. No.: US 2011/0123902 Al.
12.
Yang
,
X.
,
Liu
,
Y.
,
Li
,
S.
,
Wei
,
X.
,
Wang
,
L.
, and
Chen
,
Y.
,
2012
, “
A Direct Borohydride Fuel Cell With a Polymer Fiber Membrane and Non-Noble Metal Catalysts
,”
Sci. Rep.
,
2
, pp. 56701–56705.10.1038%2Fsrep00567
13.
Yang
,
X.
,
Liu
,
Y.
,
Fang
,
Y.
,
Wang
,
L.
,
Li
,
S.
, and
Wei
,
X.
,
2013
, “
A Direct Methanol Fuel Cell Without the Use of a Polymer Electrolyte Membrane or Precious Metal Cathode Catalyst
,”
J. Power Sources
,
234
, pp.
272
276
.10.1016/j.jpowsour.2013.01.176
14.
Prakash
,
G. K. S.
,
Krause
,
F. C.
,
Viva
,
F. A.
,
Narayanan
,
S. R.
, and
Olah
,
G. A.
,
2011
, “
Study of Operating Conditions and Cell Design on the Performance of Alkaline Anion Exchange Membrane Based Direct Methanol Fuel Cells
,”
J. Power Sources
,
196
(
19
), pp.
7967
7972
.10.1016/j.jpowsour.2011.05.056
15.
Li
,
Y. S.
, and
Zhao
,
T. S.
,
2011
, “
A High-Performance Integrated Electrode for Anion-Exchange Membrane Direct Ethanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
13
), pp.
7707
7713
.10.1016/j.ijhydene.2011.03.090
16.
Choudhury
,
N. A.
,
Ma
,
J.
, and
Sahai
,
Y.
,
2012
, “
High Performance and Eco-Friendly Chitosan Hydrogel Membrane Electrolytes for Direct Borohydride Fuel Cells
,”
J. Power Sources
,
210
, pp.
358
365
.10.1016/j.jpowsour.2012.03.013
17.
Naughton
,
M. S.
,
Brushett
,
F. R.
, and
Kenis
,
P. J. A.
,
2011
, “
Carbonate Resilience of Flowing Electrolyte-Based Alkaline Fuel Cells
,”
J. Power Sources
,
196
(
4
), pp.
1762
1768
.10.1016/j.jpowsour.2010.09.114
18.
Kjeang
,
E.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2009
, “
Microfluidic Fuel Cells: A Review
,”
J. Power Sources
,
186
(
2
), pp.
353
369
.10.1016/j.jpowsour.2008.10.011
19.
Li
,
Y. S.
,
Zhao
,
T. S.
, and
Liang
,
Z. X.
,
2009
, “
Performance of Alkaline Electrolyte-Membrane-Based Direct Ethanol Fuel Cells
,”
J. Power Sources
,
187
(
2
), pp.
387
392
.10.1016/j.jpowsour.2008.10.132
20.
Zarrin
,
H.
,
Wu
,
J.
,
Fowler
,
M.
, and
Chen
,
Z.
,
2012
, “
High Durable PEK-Based Anion Exchange Membrane for Elevated Temperature Alkaline Fuel Cells
,”
J. Membr. Sci.
,
394–395
, pp.
193
201
.10.1016/j.memsci.2011.12.041
21.
Li
,
X.
, and
Faghri
,
A.
,
2013
, “
Review and Advances of Direct Methanol Fuel Cells (DMFCs) Part I: Design, Fabrication, and Testing With High Concentration Methanol Solutions
,”
J. Power Sources
,
226
, pp.
223
240
.10.1016/j.jpowsour.2012.10.061
22.
Bahrami
,
H.
, and
Faghri
,
A.
,
2013
, “
Review and Advances of Direct Methanol Fuel Cells: Part II: Modeling and Numerical Simulation
,”
J. Power Sources
,
230
, pp.
303
320
.10.1016/j.jpowsour.2012.12.009
23.
Bahrami
,
H.
, and
Faghri
,
A.
,
2012
, “
Multi-Layer Membrane Model for Mass Transport in a Direct Ethanol Fuel Cell Using an Alkaline Anion Exchange Membrane
,”
J. Power Sources
,
218
, pp.
286
296
.10.1016/j.jpowsour.2012.06.057
24.
Spendelow
,
J. S.
, and
Wieckowski
,
A.
,
2007
, “
Electrocatalysis of Oxygen Reduction and Small Alcohol Oxidation in Alkaline Media
,”
Phys. Chem. Chem. Phys.
,
9
(
21
), pp.
2654
2675
.10.1039/b703315j
You do not currently have access to this content.