The mechanical reliability of the membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFCs) is a major concern with respect to fuel cell vehicles. When PEFCs generate power, water is generated. The proton exchange membrane (PEM) swells in wet conditions and shrinks in dry conditions. These cyclic conditions induce mechanical stress in the MEA, and cracks are formed. Failure of the MEA can result in leaking of fuel gases and reduced output power. Therefore, it is necessary to determine the mechanical reliability of the MEA under various mechanical and environmental conditions. The purpose of the present paper is to observe the deformation behavior of the MEA under humidity cycles. We have developed a device in which the constrained condition of the GDL is modeled by carbon bars of 100 to 500 μm in diameter. The carbon bars are placed side by side and are pressed against the MEA. The device was placed in a temperature and humidity controlled chamber, and humidity cycles were applied to the specimen. During the tests, cross sections of the specimen were observed by microscope, and the strain was calculated based on the curvature of the specimen. The temperature in the test chamber was varied from 25 to 80 °C, and the relative humidity was varied from 50 to 100%RH, and the wet condition was also investigated. The results revealed that the MEA deformed significantly by swelling and residual deformation was observed under the dry condition, even for one humidity cycle. The crack formation criteria for one humidity cycle corresponded approximately with those of the static tensile tests. The results of the humidity cycle tests followed Coffin–Manson law, and the number of cycles until crack formation corresponded approximately with the results of the mechanical fatigue tests. These results will be valuable in the critical design of durable PEFCs.

References

References
1.
Garland
,
N. L.
, and
Kopasz
,
J. P.
,
2007
, “
The United States Department of Energy's High Temperature, Low Relative Humidity Membrane Program
,”
J. Power Sources
,
172
(
1
), pp.
94
99
.10.1016/j.jpowsour.2007.01.025
2.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2010
, “
Constitutive Modeling of the Rate, Temperature, and Hydration Dependent Deformation Response of Nafion to Monotonic and Cyclic Loading
,”
J. Power Sources
,
195
(
17
), pp.
5692
5706
.10.1016/j.jpowsour.2010.03.047
3.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2011
, “
Biaxial Elastic Viscoplastic Behavior of Nafion Membranes
,”
Polymer
,
52
(
2
), pp.
529
539
.10.1016/j.polymer.2010.11.032
4.
Huang
,
X.
,
Solasi
,
R.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsn
,
K.
,
Condit
,
D.
,
Burlatsky
,
S.
, and
Madden
,
T.
,
2006
, “
Mechanical Endurance of Polymer Electrolyte and PEM Fuel Cell Durability
,”
J. Polym. Sci. Part B
,
44
(
16
), pp.
2346
2357
.10.1002/polb.20863
5.
Tang
,
Y.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Gilbert
,
M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2006
, “
An Experimental Investigation of Humidity and Temperature Effects on the Mechanical Properties of Perfluorosulfonic Acid Membrane
,”
Mater. Sci. Eng. A
,
425
(
1–2
), pp.
297
304
.10.1016/j.msea.2006.03.055
6.
Shao
,
Y. Y.
,
Yin
,
G. P.
,
Wang
,
Z. B.
, and
Gao
,
Y. Z.
,
2007
, “
Proton Exchange Membrane Fuel Cell From Low Temperature to High Temperature: Material Challenges
,”
J. Power Sources
,
167
(
2
), pp.
235
242
.10.1016/j.jpowsour.2007.02.065
7.
Lai
,
Y. H.
,
Mittelstedt
,
C. K.
,
Gittleman
,
C. S.
, and
Dillard
,
D. A.
,
2009
, “
Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
2
), p.
021002
.10.1115/1.2971045
8.
Dillard
,
D. A.
,
Li
,
Y.
,
Grohs
,
J. R.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Budinski
,
M.
, and
Gittleman
,
C. S.
,
2009
, “
On the Use of Pressure-Loaded Blister Tests to Characterize the Strength and Durability of Proton Exchange Membranes
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
3
), p.
031014
.10.1115/1.3007431
9.
Li
,
Y.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Gittleman
,
C. S.
, and
Miller
,
D. P.
,
2009
, “
Fatigue and Creep to Leak Tests of Proton Exchange Membranes Using Pressure-Loaded Blisters
,”
J. Power Sources
,
194
(
2
), pp.
873
879
.10.1016/j.jpowsour.2009.06.083
10.
Grohs
,
J. R.
,
Li
,
Y.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
, and
Gittleman
,
C. S.
,
2009
, “
Evaluating the Time and Temperature Dependent Biaxial Strength of Gore-Select® Series 57 Proton Exchange Membrane Using a Pressure Loaded Blister Test
,”
J. Power Sources
,
195
(
2
), pp.
527
531
.10.1016/j.jpowsour.2009.07.054
11.
Jia
,
R.
,
Han
,
B.
,
Levi
,
K.
,
Hasegawa
,
T.
,
Ye
,
J.
, and
Dauskardt
,
R. H.
,
2011
, “
Mechanical Durability of Proton Exchange Membranes With Catalyst Platinum Dispersion
,”
J. Power Sources
,
196
(
20
), pp.
8234
8240
.10.1016/j.jpowsour.2011.05.069
12.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2011
Hygro-Thermal Mechanical Behavior of Nafion During Constrained Swelling
,”
J. Power Sources
,
196
(
7
), pp.
3452
3460
.10.1016/j.jpowsour.2010.11.116
13.
Pestrak
,
M.
,
Li
,
Y.
,
Case
,
S. W.
,
Dillard
,
D. A.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
, and
Gittleman
,
C. S.
,
2010
, “
The Effect of Mechanical Fatigue on the Lifetimes of Membrane Electrode Assemblies
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041009
.10.1115/1.4000629
14.
Hicks
,
M.
,
Pierpont
,
D.
,
Turner
,
P.
, and
Watschke
,
T.
,
2006
, “
Accelerated Testing and Lifetime Modeling for the Development of Durable Fuel Cell MEAs
,”
ECS Trans.
,
1
(
8
), pp.
229
237
.10.1149/1.2214556
15.
Zhang
,
S.
,
Yuan
,
X.
,
Wang
,
H.
,
Merida
,
W.
,
Zhu
,
H.
,
Shen
,
J.
,
Wu
,
S.
, and
Zhang
,
J.
,
2009
, “
A Review of Accelerated Stress Tests of MEA Durability in PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
388
404
.10.1016/j.ijhydene.2008.10.012
16.
Kim
,
S.
, and
Mench
,
M. M.
,
2007
, “
Physical Degradation of Membrane Electrode Assemblies Undergoing Freeze/Thaw Cycling: Micro-Structure Effects
,”
J. Power Sources
,
174
(
1
), pp.
206
220
.10.1016/j.jpowsour.2007.08.111
17.
Kai
,
Y.
,
Kitayama
,
Y.
,
Omiya
,
M.
,
Uchiyama
,
T.
, and
Kato
,
M.
,
2013
, “
Crack Formation in Membrane Electrode Assembly Under Static and Cyclic Loadings
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
2
), p.
021007
.10.1115/1.4023878
18.
Uchiyama
,
T.
,
Kato
,
M.
, and
Yoshida
,
T.
,
2012
, “
Buckling Deformation of Polymer Electrolyte Membrane and Membrane Electrode Assembly Under Humidity Cycles
,”
J. Power Sources
,
206
, pp.
37
46
.10.1016/j.jpowsour.2012.01.073
19.
Uchiyama
,
T.
,
Kumei
,
H.
, and
Yoshida
,
T.
,
2013
, “
Catalyst Layer Cracks by Buckling Deformation of Membrane Electrode Assemblies Under Humidity Cycles and Mitigation Methods
,”
J. Power Sources
,
238
, pp.
403
412
.10.1016/j.jpowsour.2013.04.026
You do not currently have access to this content.