The solid oxide fuel cell–micro gas turbine hybrid system with CO2 capture seems to be a prospective system with high efficiency and low emissions. Three hybrid systems with/without CO2 capture are designed and simulated based on the IPSEPro simulation platform. The performance on the design point shows that case 2 is a better one, whose system efficiency is 59% and CO2 capture rate is 99%; thus, case 2 is suitable to build a quasi-zero carbon emission plant. However, case 3 is more suitable to rebuild an existing plant. Then the off-design point performance and the effect of the capture rate on the system performance of cases 2 and 3 are investigated. The suggested capture rate for cases 2 and 3 is given based on the result, taking both economic factors and carbon emissions into consideration.

References

References
1.
Zheng
,
L.
,
2011
, Tsinghua University BP Clean Energy and Education Center, China.
2.
Earth System Research Laboratory Global Monitoring Division,
2009
, NOAA/ESRL, Boulder, CO.
3.
IEA
,
2011
, “World Energy Outlook,” International Energy Agency, Paris.
4.
U.S. Energy Information Administration
,
2011
, “
Annual Energy Review 2011 With Projections for 2035
,” U.S. Department of Energy, Washington, D.C.
5.
Magistri
,
L.
,
Ferrar
,
M. L.
,
Traverso
,
A.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
,
2004
, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids—Part C: Whole-Cycle Model
,”
ASME
Paper No. GT2004-53845. 10.1115/GT2004-53845
6.
Chan
,
S. H.
,
Ho
,
K.
, and
Tian
,
Y.
,
2003
, “
Modeling for Part-Load Operation of Solid Oxide Fuel Cell-Gas Turbine Hybrid Power Plant
,”
J. Power Sources
,
114
(2), pp.
213
227
.10.1016/S0378-7753(02)00613-4
7.
Palsson
,
J.
,
Selimovic
,
A.
, and
Sjunnesson
,
L.
,
2000
, “
Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation
,”
J. Power Sources
,
86
(1–2), pp.
442
448
.10.1016/S0378-7753(99)00464-4
8.
Selimovic
,
A.
and
Palsson
,
J.
,
2002
, “
Networked Solid Oxide Fuel Cell Stacks Combined With a Gas Turbine Cycle
,”
J. Power Sources
,
106
(1–2), pp.
76
82
.10.1016/S0378-7753(01)01051-5
9.
Agnew
,
G. D.
,
Townsend
,
J.
,
Moritz
,
R. R.
,
Bozzolo
,
M.
,
Berenyi
,
S.
, and
Duge
,
E.
,
2004
, “
Progress in the Development of a Low Cost 1MW SOFC Hybrid
,”
ASME
Paper No. GT2004–53350. 10.1115/GT2004-53350
10.
Karvountzi
,
G. C.
,
Ferrall
,
J.
, and
Powers
,
J. D.
,
2007
, “
Effect of Fuel Cell Operating Parameters on the Performance of a Multi-MW Solid Oxide Fuel Cell/Gas Turbine Hybrid System
,”
ASME
Paper No. GT2007-27553. 10.1115/GT2007-27553
11.
Wong
,
S.
,
Payzant
,
J.
,
Bioletti
,
R.
, and
Feng
,
X.
,
2002
, “
CO2 Separation Technology in Enhanced Oil Recovery: A State-of-the-Art Technical and Economic Review, Final Report
,” Alberta Research Council, Alberta, Canada.
12.
Rheinlander
,
J.
,
Perz
,
E.
d
W.
, and
Geobel
,
O.
,
2003
, “
Performance Simulation of Integrated Water and Power Systems-Software Tools IPSEpro and RESYSpro for Technical, Economic and Ecological Analysis
,”
Desalination
,
157
(1–3), pp.
57
64
.10.1016/S0011-9164(03)00383-7
13.
Stiller
,
C.
,
2006
, “
Design, Operation and Control Modeling of SOFC/GT Hybrid Systems
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Sweden.
14.
Massardo
,
A. F.
and
Lubelli
,
F.
,
2000
, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT)—Part A: Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
122
(1), pp.
27
35
.10.1115/1.483187
15.
He
,
W.
and
Chen
,
Q.
,
1998
, “
Three-Dimensional Simulation of a Molten Carbonate Fuel Cell Stack Under Transient Conditions
,”
J. Power Sources
,
73
(2), pp.
182
192
.10.1016/S0378-7753(97)02800-0
16.
Achenbach
,
E.
,
1994
, “
Three-Dimensional and Time-Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
49
(1–3), pp.
333
348
.10.1016/0378-7753(93)01833-4
17.
Wang
,
L.
,
Zhang
,
H.
, and
Weng
,
S.
,
2008
, “
Modeling and Simulation of Solid Oxide Fuel Cell Based on the Volume-Resistance Characteristic Modeling Technique
,”
J. Power Sources
,
177
(2), pp.
579
589
.10.1016/j.jpowsour.2007.10.051
18.
Smith
,
J. M.
,
Van Ness
,
H. C.
, and
Abbott
,
M. M.
,
2005
,
Introduction to Chemical Engineering Thermodynamics
,
7th ed.
,
McGraw-Hill
,
New York
, pp.
140
141
.
19.
Peng
,
D.
, and
Robinson
,
D. B.
, 1976, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
20.
Augsten
,
D. M.
,
1989
, “
A Model for Vapor-Liquid Equilibria for Acid Gas-Alkanolamine-H2O Systems
,” Ph.D. thesis,
Chemical Engineering, University of Texas at Austin
,
Austin, TX
.
21.
Zhang
,
X.
,
Zhang
,
C.-F.
,
Qin
,
S.-J.
, and
Zheng
,
Z.-S.
,
2001
, “
A Kinetics Study on the Absorption of Carbon Dioxide Into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine
,”
Ind. Eng. Chem. Res.
,
40
(17), pp.
3785
3791
.10.1021/ie000956i
22.
Tomcej
,
R. A.
and
Otto
,
F. D.
,
1986
, “
Improved Design of Amine Treating Units by Simulation Using Personal Computers
,” World Congress III of Chemical Engineering, Tokyo, September 21–25.
23.
T Song
,
T. W.
,
Sohn
,
J. L.
, and
Kim
,
J. H.
,
2004
, “
Parametric Studies for a Performance Analysis of SOFC/MGT Hybrid Power System Based on a Quasi-2D Model
,”
ASME
Paper No. GT2004-53304. 10.1115/GT2004-53304
You do not currently have access to this content.