Proton exchange membrane (PEM) fuel cell is regarded as one of the potential renewable energy which may provide a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great progress has been made, long-term stability and durability is still an issue. The contamination ion plays an important role on the electrical performance of PEM fuel cell. This paper investigates the effect of Mg2+ contamination on PEM fuel cell performance as a function of Mg2+ concentration. Two levels of Mg2+ concentration was chose. From the experimental results, it can be obtained that a significant drop in fuel cell performance occurred when Mg2+ was injected into the anode fuel stream. The voltage and power density of fuel cell decreased larger and larger with increase of Mg2+ concentration over time. The Mg2+ mainly caused the concentration polarization loss from the anode catalyst to the membrane in fuel cell.

References

References
1.
Li
,
H.
,
Gazzarri
,
J.
,
Tsay
K.
,
Wu
,
S. H.
,
Wang
,
H. J.
,
Zhang
,
J. J.
,
Wessel
,
S.
,
Abouatallah
,
R.
,
Joos
,
N.
, and
Schrooten
,
J.
,
2010
, “
PEM Fuel Cell Cathode Contamination in the Presence of Cobalt Ion (Co2+)
,”
Electrochim. Acta.
,
55
(
20
), pp.
5823
5830
.10.1016/j.jpowsour.2010.07.003
2.
Chiun
,
H. C.
,
Chen
,
C. C.
,
Hsiang
,
H. L.
, and
Yi
,
Y. Y.
,
2008
, “
Improvement of CO Tolerance of Proton Exchange Membrane Fuel Cell by an Air-Bleeding Technique
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
1
), p.
014501
.10.1115/1.2784278
3.
Guo
,
S. M.
, and
Hasan
,
A. B. M.
,
2009
, “
Proton Exchange Membrane Fuel Cell High Carbon Monoxide Tolerance Operation Using Pulsed Heating and Pressure Swing
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
1
), p.
011022
.10.1115/1.2972163
4.
Sulek
,
M.
,
Adams
,
J.
,
Kaberline
,
S.
,
Ricketts
,
M.
, and
Waldecker,
J. R.
,
2011
, “
In Situ Metal Ion Contamination and the Effects on Proton Exchange Membrane Fuel Cell Performance
,”
J. Power Sources
,
196
(
21
), pp.
8967
8972
.10.1016/j.jpowsour.2011.01.086
5.
Okada
,
T.
,
Satou
,
H.
,
Okuno
,
M.
, and
Yuasa
,
M.
,
2002
, “
Ion and Water Transport Characteristics of Perfluorosulfonated Ionomer Membranes With H+ and Alkali Metal Cations
,”
J.Phys. Chem. B.
,
106
(
6
), pp.
1267
1273
.10.1021/jp013195l
6.
Okada
,
T.
,
Ayato
,
Y.
,
Satou
,
H.
,
Yuasa
,
M.
, and
Sekine
,
I.
,
2001
, “
The Effect of Impurity Cations on the Oxygen Reduction Kinetics at Platinum Electrodes Covered With Perfluorinated Ionomer
,”
J. Phys. Chem. B
,
105
(
29
), pp.
6980
6986
.10.1021/jp010822y
7.
Okada
T
.,
1999
, “
Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells: Part 1. The Effect of Impurity Ions at the Anode Side on the Membrane Performances
,”
J. Electroanal. Chem.
465
(
1
), pp.
1
17
.10.1016/S0022-0728(99)00065-0
8.
Okada
,
T.
,
Ayato
,
Y.
,
Yuasa
,
M.
, and
Sekine
,
I.
,
1999
, “
The Effect of Impurity Cations on the Transport Characteristics of Perfluorosulfonated Ionomer Membranes
,”
J. Phys. Chem. B
,
103
(
17
), pp.
3315
3322
.10.1021/jp983762d
9.
Okada
,
T
.,
1999
, “
Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells: Part 2.The Effect of Impurity Ions at the Cathode Side on the Membrane Performances
,”
J. Electroanal. Chem.
,
465
(
1
), pp.
18
29
.10.1016/S0022-0728(98)00415-X
10.
Okada
,
T.
,
Møller-Holst
,
S.
,
Gorseth
,
O.
, and
Kjelstrup
,
S.
,
1998
, “
Transport and Equilibrium Properties of Nafion® Membranes With H+ and Na+ Ions
,”
J. Electroanal. Chem.
,
442
(
1–2
), pp.
137
145
.10.1016/S0022-0728(97)00499-3
11.
Okada
,
T.
,
Xie
,
G.
, and
Tanabe
,
Y.
,
1996
, “
Theory of Water Management at the Anode Side of Polymer Electrolyte Fuel Cell Membranes
,”
J. Electroanal. Chem.
,
413
(
1–2
), pp.
49
65
.10.1016/0022-0728(96)04669-4
12.
Li
,
H.
,
Wang
,
H. J.
,
Qian
,
W. M.
,
Zhang
,
S. S.
,
Wessel
,
S.
,
Cheng
,
T. T. H.
,
Shen
,
J.
, and
Wu
,
S. H.
,
2011
, “
Chloride Contamination Effects on Proton Exchange Membrane Fuel Cell Performance and Durability
,”
J. Power Sources
,
196
(
15
), pp.
6249
6255
.10.1016/j.jpowsour.2011.04.018
13.
Li
,
H.
,
Tsay
,
K.
,
Wang
,
H. J.
,
Shen,
J.
,
Wu
,
S. H.
,
Zhang
,
J. J.
,
Jia
,
N. Y.
,
Wessel
,
S.
,
Abouatallah
,
R.
,
Joos
,
N.
, and
Schrooten
,
J.
,
2010
, “
Durability of PEM Fuel Cell Cathode in the Presence of Fe3+ and Al3+
,”
J. Power Sources
,
195
(
24
), pp.
8089
8093
.10.1016/j.jpowsour.2010.07.003
14.
Li
,
H.
,
Tsay
,
K.
,
Wang
,
H.
,
Wu
,
S
.,
Zhang
,
J.
,
Jia
,
N.
,
Wessel
,
S.
,
Abouatallah
,
R.
,
Joos
,
N.
, and
Schrooten
,
J.
,
2010
, “
Effect of Co2+ on Oxygen Reduction Reaction Catalyzed by Pt Catalyst, and Its Implications for Fuel Cell Contamination
,”
Electrochim. Acta.
,
55
(
8
), pp.
2622
2628
.10.1016/j.electacta.2009.12.037
15.
Cheng
,
X.
,
Shi
,
Z.
,
Glass
,
N.
,
Zhang
,
L.
,
Zhang
,
J.
,
Song
,
D.
,
Liu
,
Z. S.
,
Wang
,
H. J.
, and
Shen
,
J.
,
2007
, “
A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation
,”
J. Power Sources
,
165
(
2
), pp.
739
756
.10.1016/j.jpowsour.2006.12.012
16.
Kienitz
,
B. L.
,
Baskaran
,
H.
, and
Zawodzinski
,
T. A.
, Jr.
,
2009
, “
Modeling the Steady-State Effects of Cationic Contamination on Polymer Electrolyte Membranes
,”
Electrochim. Acta
,
54
(
6
), pp.
1671
1679
.10.1016/j.electacta.2008.09.058
17.
Halseid
,
R.
,
Vie
,
P. J. S.
, and
Tunold
,
R.
,
2006
, “
Effect of Ammonia on the Performance of Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
154
(
2
), pp.
343
350
.10.1016/j.jpowsour.2005.10.011
18.
St-Pierre
,
J
.,
2011
, “
PEMFC Contaminant Tolerance Limit—Foreign Cations in Ionomers
,”
Int. J. Hydrogen Energy
,
36
(
9
), pp.
5527
5535
.10.1016/j.ijhydene.2011.01.143
19.
Tan
,
J. Z.
,
Chao
,
Y. J.
,
Li
,
X.
, and
Van Zee
,
J. W.
,
2007
, “
Degradation of Silicone Rubber Under Compression in a Simulated PEM Fuel Cell Environment
,”
J. Power Sources
,
172
(
2
), pp.
782
789
.10.1016/j.jpowsour.2007.05.026
You do not currently have access to this content.