The clamping force during the assembly of proton exchange membrane (PEM) fuel cells has a great influence in the contact resistance between bipolar plate (BPP) and gas diffusion layer (GDL). In this paper, three different types of carbon papers are used as GDL materials. The contact resistance between BPP and GDL is measured under different applied clamping torques. Based on experimental data, a relationship of compressive pressure resulting from the applied clamping torque and contact resistivity is established by the least square method. Based on the commercial code abaqus, a program is developed to predict the contact resistivity. In addition, the changes of contact pressure, contact area, and porosity of GDL are studied. The experimental result shows that the contact resistivity nonlinearly decreases with increasing of the applied clamping torque. The thicker GDL without fillers has a higher contact resistivity. Finite element analysis (FEA) results show that both contact area and contact pressure increase with increasing of the compressive pressure in the same fillet radius of the rib, except that the fillet radius is zero. The porosity decreases with increase of the clamping force. The contact resistivity is consistent with the experimental results. So it can be predicted very well.

References

1.
Lai
,
X. M.
,
Liu
,
D. A.
,
Peng
,
L. F.
, and
Ni
,
J.
,
2008
, “
A Mechanical-Electrical Finite Element Method Model for Predicting Contact Resistance Between Bipolar Plate and Gas Diffusion Layer in PEM Fuel Cells
,”
J. Power Sources
,
182
(
1
), pp.
153
159
.10.1016/j.jpowsour.2008.03.069
2.
Yi
,
P. Y.
,
Peng
,
L. F.
, and
Lai
,
X. M.
,
2011
, “
A Numerical Model for Predicting Gas Diffusion Layer Failure in Proton Exchange Membrane Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
1
), p.
011011
.10.1115/1.4002312
3.
Gallo Stampino
,
P.
,
Omati
,
L.
, and
Dotelli
,
G.
,
2011
, “
Electrical Performance of PEM Fuel Cells With Different Gas Diffusion Layers
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
4
), p.
041005
.10.1115/1.4003630
4.
Lee
,
S. J.
,
Yang
,
K. T.
,
Lee
,
Y. M.
, and
Lee
,
C. Y.
,
2010
, “
The Resistive Properties of Proton Exchange Membrane Fuel Cells With Stainless Steel Bipolar Plates
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041004
.10.1115/1.3179760
5.
Liu
,
S. X.
,
Song
,
C.
, and
Lin
,
Z. J.
,
2008
, “
The Effects of the Interconnect Rib Contact Resistance on the Performance of Planar Solid Oxide Fuel Cell Stack and the Rib Design Optimization
,”
J. Power Sources
,
183
(
1
), pp.
214
225
.10.1016/j.jpowsour.2008.04.054
6.
Lee
,
W. K.
,
Ho
,
C. H.
,
Van Zee
,
J. W.
, and
Murthy
,
M.
,
1999
, “
The Effects of the Compression and Gas Diffusion Layers on the Performance of a PEM Fuel Cell
,”
J. Power Sources
,
84
(
1
), pp.
45
51
.10.1016/S0378-7753(99)00298-0
7.
Ge
,
J. B.
,
Higier
,
A.
, and
Liu
,
H. T.
,
2006
, “
Effect of Gas Diffusion Layer Compression on PEM Fuel Cell Performance
,”
J. Power Sources
,
159
(
2
), pp.
922
927
.10.1016/j.jpowsour.2005.11.069
8.
Xing
,
X. Q.
,
Lum
,
K. W.
,
Poh
,
H. J.
, and
Wu
,
Y. L.
,
2010
, “
Optimization of Assembly Clamping Pressure on Performance of Proton-Exchange Membrane Fuel Cells
,”
J. Power Sources
,
195
, pp.
62
68
.10.1016/j.jpowsour.2009.06.107
9.
Mishra
,
V.
,
Yang
,
F.
, and
Pitchumani
,
R.
,
2004
, “
Measurement and Prediction of Electrical Contact Resistance Between Gas Diffusion Layers and Bipolar Plate for Applications to PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
1
(
1
), pp.
2
9
.10.1115/1.1782917
10.
Jayaraj
,
J.
,
Kim
,
Y. C.
,
Seok
,
H. K.
,
Kim
,
K. B.
, and
Fleury
,
E.
,
2007
, “
Development of Metallic Glasses for Bipolar Plate Application
,”
Mater. Sci. Eng. A
,
449–451
, pp.
30
33
.10.1016/j.msea.2006.02.238
11.
Wang
,
H.
,
Sweikart
,
M. A.
, and
Turner
,
J. A.
,
2003
, “
Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
115
(
2
), pp.
243
251
.10.1016/S0378-7753(03)00023-5
12.
Ihonen
,
J.
,
Jaouen
,
F.
,
Lindbergh
,
G.
, and
Sundholm
,
G.
,
2001
, “
A Novel Polymer Electrolyte Fuel Cell for Laboratory Investigations and In-Situ Contact Resistance Measurements
,”
Electrochim. Acta
,
46
(
19
), pp.
2899
2911
.10.1016/S0013-4686(01)00510-2
13.
Zhou
,
Y.
,
Lin
,
G.
,
Shih
,
A. J.
, and
Hu
,
S. J.
,
2009
, “
Multiphysics Modeling of Assembly Pressure Effects on Proton Exchange Membrane Fuel Cell Performance
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
4
), p.
041005
.10.1115/1.3081426
14.
Cho
,
E. A.
,
Jeon
,
U. S.
,
Ha
,
H. Y.
, and
Hong
,
S. A.
,
2004
, “
Characteristics of Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
125
(
2
), pp.
178
182
.10.1016/j.jpowsour.2003.08.039
15.
Davies
,
D. P.
,
Adcock
,
P. L.
, and
Turpin
,
M.
,
2000
, “
Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells
,”
J. Power Sources
,
86
(
1–2
), pp.
237
242
.10.1016/S0378-7753(99)00524-8
16.
Wu
,
Z. L.
,
Wang
,
S. X.
,
Zhang
,
L. H.
, and
Jack Hu
,
S.
,
2009
, “
An Analytical Model and Parametric Study of Electrical Contact Resistance in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
189
(
2
), pp.
1066
1073
.10.1016/j.jpowsour.2008.12.129
17.
Wu
,
Z. L.
,
Zhou
,
Y. Y.
,
Lin
,
G. S.
,
Wang
,
S. X.
, and
Jack Hu
,
S.
,
2008
, “
An Improved Model for Predicting Electrical Contact Resistance Between Bipolar Plate and Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
182
(
1
), pp.
265
269
.10.1016/j.jpowsour.2008.03.044
18.
Zhou
,
P.
,
Wu
,
C. W.
, and
Ma
,
G. J.
,
2006
, “
Contact Resistance Prediction and Structure Optimization of Bipolar Plates
,”
J. Power Sources
,
159
(
2
), pp.
1115
1122
.10.1016/j.jpowsour.2005.12.080
19.
Zhang
,
L. H.
,
Liu
,
Y.
,
Song
,
H. M.
,
Wang
,
S. X.
,
Zhou
,
Y. Y.
, and
Jack Hub
,
S.
,
2006
, “
Estimation of Contact Resistance in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
162
, pp.
1165
1171
.10.1016/j.jpowsour.2006.07.070
20.
Avasarala
,
B.
, and
Haldar
,
P.
,
2009
, “
Effect of Surface Roughness of Composite Bipolar Plates on the Contact Resistance of a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
188
(
1
), pp.
225
229
.10.1016/j.jpowsour.2008.11.063
21.
Kraytsberg
,
A.
,
Auinat
,
M.
, and
Ein-Eli
,
Y.
,
2007
, “
Reduced Contact Resistance of PEM Fuel Cell's Bipolar Plates Via Surface Texturing
,”
J. Power Sources
,
164
(
2
), pp.
697
703
.10.1016/j.jpowsour.2006.11.033
22.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.,
2006
, “
Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-thermal Cycle
,”
J. Power Sources
,
161
(
2
), pp.
987
996
.10.1016/j.jpowsour.2006.05.020
23.
Bograchev
,
D.
,
Gueguen
,
M.
,
Grandidier
,
J. C.
, and
Martemianov
,
S.
,
2008
, “
Stress and Plastic Deformation of MEA in Fuel Cells: Stresses Generated During Cell Assembly
,”
J. Power Sources
,
180
(
1
), pp.
393
401
.10.1016/j.jpowsour.2008.02.048
24.
Serincan
,
M. F.
, and
Pasaogullari
,
U.
,
2011
, “
Mechanical Behavior of the Membrane During the Polymer Electrolyte Fuel Cell Operation
,”
J. Power Sources
,
196
(
3
), pp.
1303
1313
.10.1016/j.jpowsour.2010.06.045
25.
García-Salaberri
,
P. A.
,
Vera
,
M.
, and
Zaera
,
R.
,
2011
, “
Nonlinear Orthotropic Model of the Inhomogeneous Assembly Compression of PEM Fuel Cell Gas Diffusion Layers
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
11856
11870
.10.1016/j.ijhydene.2011.05.152
26.
Xu
,
H.
,
1991
,
Handbook of Design
,
China Machine
,
Beijing
.
You do not currently have access to this content.