One of the major barriers for polymer electrolyte membrane (PEM) fuel cells to be commercially viable for stationary and transportation applications is the durability of membranes undergoing chemical and mechanical degradation over the period of operation. Toward understanding the effects of operating parameters on membrane durability, this paper presents numerical simulations for a single channel PEM fuel cell undergoing changes in load, by subjecting a unit cell to step changes in voltage. The objective is to elucidate the mechanical response of the membrane, which is subjected to hygral (water) loading and unloading cycles at constant temperature. Detailed three-dimensional (3D) computational fluid dynamics (CFD) simulations are conducted, taking into account the complex interactions of water transport dynamics and load changes, to accurately capture the water content in the membrane with changes in cell voltage. The water content obtained through CFD simulations is, in turn, used to carry out two-dimensional (2D) finite element (FE) analysis to predict the mechanical response of the membrane undergoing cyclic change in water content, as the operating voltage is cycled. The effects of cyclic changes in cell potential on the stresses induced, amount of plastic strain, and its localization are analyzed for various inlet cathode humidity values for two sections along the length of the fuel cell.

References

References
1.
Wang
,
C. Y.
,
2004
, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
,
104
(10), pp.
4727
4766
.10.1021/cr020718s
2.
Perry
,
M. L.
, and
Fuller
,
T. F.
,
2002
, “
A Historical Perspective of Fuel Cell Technology in the 20th Century
,”
J. Electrochem. Soc.
,
149
(
7
), pp.
S59
S67
.10.1149/1.1488651
3.
Borup
,
R.
,
Meyers
,
J.
,
Pivovar
,
B.
,
Kim
,
Y. S.
,
Mukundan
,
R.
,
Garland
,
N.
, Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J. E., Inaba, O. M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N.,
2007
, “
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
,”
Chem. Rev. Columbus
,
107
(
10
), pp.
3904
3951
.10.1021/cr050182l
4.
Stanic
,
V.
, and
Hoberecht
,
M.
,
2004
, “
Mechanism of Pin-Hole Formation in Membrane Electrode Assemblies for PEM Fuel Cells
,”
4th International Symposium on Proton Conducting Membrane Fuel Cells
, Honolulu, HI, October 3–8.
5.
Liu
,
W.
,
Ruth
,
K.
, and
Rusch
,
G.
,
2001
, “
Membrane Durability in PEM Fuel Cells
,”
J. New Mater. Electrochem. Syst.
,
4
(4), pp.
227
231
.
6.
Gode
,
P.
,
Ihonen
,
J.
,
Strandroth
,
A.
,
Ericson
,
H.
,
Lindbergh
,
G.
,
Paronen
,
M.
,
Sundholm
,
F.
,
Sundholm
,
G.
, and
Walsby
,
N.
,
2003
, “
Membrane Durability in a PEM Fuel Cell Studied Using PVDF Based Radiation Grafted Membranes
,”
Fuel Cells
,
3
(
1–2
), pp.
21
27
.10.1002/fuce.200320239
7.
Lai
,
Y.
,
Mittelsteadt
,
C. K.
,
Gittleman
,
C. S.
, and
Dillard
,
D. A.
,
2005
, “
Viscoelastic Stress Model and Mechanical Characterization of Perfluorosulfonic Acid (PFSA) Polymer Electrolyte Membranes
,”
Third International Conference on Fuel Cell Science, Engineering and Technology
, Ypsilanti, MI, May 23–25,
ASME
Paper No. FUELCELL2005-74120, pp.
161
167
.10.1115/FUELCELL2005-74120
8.
Webber
,
A.
, and
Newman
,
J.
,
2004
, “
A Theoretical Study of Membrane Constraint in Polymer-Electrolyte Fuel Cell
,”
AIChE J.
,
50
(
12
), pp.
3215
3226
.10.1002/aic.10230
9.
Tang
,
Y.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2006
, “
Stresses in Proton Exchange Membranes Due to Hydro-Thermal Loading
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(2), pp.
119
124
.10.1115/1.2173666
10.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2006
, “
Mechanical Response of Fuel Cell Membranes Subjected to a Hygro-Thermal Cycle
,”
J. Power Sources
,
161
(2), pp.
987
996
.10.1016/j.jpowsour.2006.05.020
11.
Kusoglu
,
A.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2007
, “
Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses
,”
J. Power Sources
,
170
(2), pp.
345
358
.10.1016/j.jpowsour.2007.03.063
12.
Kusoglu
,
A.
,
Santare
,
M. H.
,
Karlsson
,
A. M.
,
Cleghorn
,
S.
, and
Johnson
,
W. B.
,
2010
, “
Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
157
(
5
), pp.
B705
B713
.10.1149/1.3328496
13.
Zhang
,
Y.
,
Mawardi
,
A.
, and
Pitchumani
,
R.
,
2006
, “
Effects of Operating Parameters on the Uniformity of Current Density Distribution in Proton Exchange Membrane Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
4
), pp.
464
476
.10.1115/1.2349531
14.
Wang
,
Y.
, and
Wang
,
C. Y.
,
2005
, “
Transient Analysis of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
50
(6), pp.
1307
1315
.10.1016/j.electacta.2004.08.022
15.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
16.
Verma
,
A.
, and
Pitchumani
,
R.
,
2013
, “
Effects of Membrane Properties on Dynamic Behavior of Polymer Electrolyte Membrane Fuel Cell
,”
ASME 11th Fuel Cell Science Engineering and Technology Conference
, Minneapolis, MN, July 23–26,
ASME
Paper No. FuelCell2013-18209.10.1115/FuelCell2013-18209
17.
ANSYS® Academic Research, Release 14.0, Help System, Mechanical APDL Theory Reference, Ansys, Inc, Canonsburg, PA.
18.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford
, UK.
You do not currently have access to this content.