The thermal conductivity of the polymer electrolyte membrane (PEM) of fuel cells is an important property affecting the overall cell performance. However, very few studies or fuel cell models include the dependence of this property on temperature and humidification conditions. In addition, no detailed studies have been reported for the quantitative understanding of how this property influences important aspects of the cell such as performance, water management, and membrane durability. This work presents results of a sensibility study performed for different membrane thermal conductivities, analyzing the influence of this parameter on the main cell response variables. The work has been performed with the aid of a computational fluid dynamics (CFD) model developed for a 50 cm2 fuel cell with serpentine flow field bipolar plates, previously validated against experimental measurements. The results show to what extent the cell performance, water management, and durability issues such as MEA temperature gradients are influenced by the membrane thermal conductivity, especially at high current densities, leading up to a 50% increase in the cell electric power at 1000 mA/cm2 when the thermal conductivity of the membrane is set to 0.26 W/(m K) instead of to the base value of 0.13 W/(m K).

References

References
1.
Li
,
Q.
,
He
,
R.
,
Jensen
,
J. O.
, and
Bjerrum
,
N. J.
,
2003
, “
Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating Above 100 °C
,”
Chem. Mater.
,
15
(
26
), pp.
4896
4915
.10.1021/cm0310519
2.
Li
,
Q.
,
He
,
R.
,
Jensen
,
J. O.
, and
Bjerrum
,
N. J.
,
2004
, “
PBI-Based Polymer Membranes for High Temperature Fuel Cells—Preparation, Characterization and Fuel Cell Demonstration
,”
Fuel Cells
,
4
(
3
), pp.
147
159
.10.1002/fuce.200400020
3.
Ma
,
Y. L.
,
Wainright
,
J. S.
,
Litt
,
M. H.
, and
Savinell
,
R. F.
,
2004
, “
Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
1
), pp.
A8
A16
.10.1149/1.1630037
4.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.10.1149/1.2085971
5.
Khandelwal
,
M.
, and
Mench
,
M. M.
,
2006
, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
,
161
(
2
), pp.
1106
1115
.10.1016/j.jpowsour.2006.06.092
6.
Vie
,
P. J. S.
, and
Kjelstrup
,
S.
,
2004
, “
Thermal Conductivities From Temperature Profiles in the Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
,
49
(
7
), pp.
1069
1077
.10.1016/j.electacta.2003.10.018
7.
Burheim
,
O.
,
Vie
,
P. J. S.
,
Pharoah
,
J. G.
, and
Kjelstrup
,
S.
,
2010
, “
Ex Situ Measurements of Through-Plane Thermal Conductivities in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
195
(
1
), pp.
249
256
.10.1016/j.jpowsour.2009.06.077
8.
Zamel
,
N.
,
Li
,
X.
,
Shen
,
J.
,
Becker
,
J.
, and
Wiegmann
,
A.
,
2010
, “
Estimating Effective Thermal Conductivity in Carbon Paper Diffusion Media
,”
Chem. Eng. Sci.
,
65
(
13
), pp.
3994
4006
.10.1016/j.ces.2010.03.047
9.
Zamel
,
N.
,
Litovsky
,
E.
,
Shakhshir
,
S.
,
Li
,
X.
, and
Kleiman
,
J.
,
2011
, “
Measurement of In-Plane Thermal Conductivity of Carbon Paper Diffusion Media in the Temperature Range of −20 °C to +120 °C
,”
Appl. Energy
,
88
(
9
), pp.
3042
3050
.10.1016/j.apenergy.2011.02.037
10.
Sadeghi
,
E.
,
Djilali
,
N.
, and
Bahrami
,
M.
,
2011
, “
A Novel Approach to Determine the In-Plane Thermal Conductivity of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
196
(
7
), pp.
3565
3571
.10.1016/j.jpowsour.2010.11.151
11.
Burheim
,
O. S.
,
Pharoah
,
J. G.
,
Lampert
,
H.
,
Vie
,
P. J.
, and
Kjelstrup
,
S.
,
2011
, “
Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
2
), p.
021013
.10.1115/1.4002403
12.
Radhakrishnan
,
A.
,
Lu
,
Z.
, and
Kandlikar
,
S. G.
,
2010
, “
Effective Thermal Conductivity of Gas Diffusion Layers Used in PEMFC: Measured With Guarded-Hot-Plate Method and Predicted by a Fractal Model
,”
ECS Trans.
,
33
(
1
), pp.
1163
1176
.10.1149/1.3484610
13.
Karimi
,
G.
,
Li
,
X.
, and
Teertstra
,
P.
,
2010
, “
Measurement of Through-Plane Effective Thermal Conductivity and Contact Resistance in PEM Fuel Cell Diffusion Media
,”
Electrochim. Acta
,
55
(
5
), pp.
1619
1625
.10.1016/j.electacta.2009.10.035
14.
Nitta
,
I.
,
Himanen
,
O.
, and
Mikkola
,
M.
,
2008
, “
Modelling the Effect of Inhomogeneous Compression of GDL on Local Transport Phenomena in a PEM Fuel Cell
,”
Fuel Cells
,
8
(
6
), pp.
411
421
.10.1002/fuce.200700058
15.
He
,
S.
,
Mench
,
M. M.
, and
Tadigadapa
,
S.
,
2006
, “
Thin Film Temperature Sensor for Real-Time Measurement of Electrolyte Temperature in a Polymer Electrolyte Fuel Cell
,”
Sensor. Actuat. A Phys.
,
125
(
2
), pp.
170
177
.10.1016/j.sna.2005.05.021
16.
Lee
,
C.-Y.
,
Weng
,
F.-B.
,
Cheng
,
C.-H.
,
Shiu
,
H.-R.
,
Jung
,
S.-P.
,
Chang
,
W.-C.
,
Chan
,
P.-C.
,
Chen
,
W.-T.
, and
Lee
,
C.-J.
,
2011
, “
Use of Flexible Micro-Temperature Sensor to Determine Temperature In Situ and to Simulate a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
196
(
1
), pp.
228
234
.10.1016/j.jpowsour.2010.06.051
17.
Wang
,
Y.
, and
Wang
,
C. Y.
,
2006
, “
A Nonisothermal, Two-Phase Model for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1193
A1200
.10.1149/1.2193403
18.
Ju
,
H.
,
Wang
,
C. Y.
,
Cleghorn
,
S.
, and
Beuscher
,
U.
,
2005
, “
Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation
,”
J. Electrochem. Soc.
,
152
(
8
), pp.
A1645
A1653
.10.1149/1.1943591
19.
Sinha
,
P. K.
,
Wang
,
C. Y.
, and
Beuscher
,
U.
,
2007
, “
Transport Phenomena in Elevated Temperature PEM Fuel Cells
,”
J. Electrochem. Soc.
,
154
(
1
), pp.
B106
B116
.10.1149/1.2393014
20.
Pasaogullari
,
U.
,
2009
, “
Heat and Water Transport Models for Polymer Electrolyte Fuel Cells
,”
Handbook of Fuel Cells
, Vol. 6,
W.
Vielstich
,
H.
Yokokawa
, and
H. A.
Gasteiger
, eds.,
John Wiley
,
Chichester, UK
.
21.
Ju
,
H.
,
Meng
,
H.
, and
Wang
,
C. Y.
,
2005
, “
A Single-Phase, Non-Isothermal Model for PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1303
1315
.10.1016/j.ijheatmasstransfer.2004.10.004
22.
Siegel
,
C.
,
2008
, “
Review of Computational Heat and Mass Transfer Modeling in Polymer-Electrolyte-Membrane (PEM) Fuel Cells
,”
Energy
,
33
(
9
), pp.
1331
1152
.10.1016/j.energy.2008.04.015
23.
Iranzo
,
A.
,
Muñoz
,
M.
,
Rosa
,
F.
, and
Pino
,
J.
,
2010
, “
Numerical Model for the Performance Prediction of a PEM Fuel Cell. Model Results and Experimental Validation
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11533
11550
.10.1016/j.ijhydene.2010.04.129
24.
Iranzo
,
A.
,
Muñoz
,
M.
,
López
,
E.
,
Pino
,
J.
, and
Rosa
,
F.
,
2010
, “
Experimental Fuel Cell Performance Analysis Under Different Operating Conditions and Bipolar Plate Designs
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11437
11447
.10.1016/j.ijhydene.2010.05.056
25.
Iranzo
,
A.
,
Muñoz
,
M.
,
Rosa
,
F.
, and
Pino
,
J.
,
2011
, “
Update on Numerical Model for the Performance Prediction of a PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
36
(
15
), pp.
9123
9127
.10.1016/j.ijhydene.2011.04.102
26.
“Fluent User Documentation v12.1,” 2010, Fluent Inc., Lebanon, NH.
27.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
,
2004
, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A399
A406
.10.1149/1.1646148
28.
Burford
,
D.
,
Davis
,
T.
, and
Mench
,
M. M.
,
2003
, “
Heat Transport and Temperature Distribution in PEFCS
,”
2004 International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
, November 13–19,
ASME
Paper No. IMECE2004-59497.10.1115/IMECE2004-59497
29.
Wang
,
C. Y.
,
2004
, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
104
(
10
), pp.
4727
4765
.10.1021/cr020718s
30.
Wu
,
J.
,
Yuan
,
X. Z.
,
Martin
,
J. J.
,
Wang
,
H.
,
Zhang
,
J.
,
Shen
,
J.
,
Wu
,
S.
, and
Merida
,
W.
,
2008
, “
A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies
,”
J. Power Sources
,
184
(
1
), pp.
104
119
.10.1016/j.jpowsour.2008.06.006
31.
Collier
,
A.
,
Wang
,
H.
,
Zi Yuan
,
X.
,
Zhang
,
J.
, and
Wilkinson
,
D. P.
,
2006
, “
Degradation of Polymer Electrolyte Membranes
,”
Int. J. Hydrogen Energy
,
31
(
13
), pp.
1838
1854
.10.1016/j.ijhydene.2006.05.006
32.
Schmittinger
,
W.
, and
Vahidi
,
A.
,
2008
, “
A Review of the Main Parameters Influencing Long-Term Performance and Durability of PEM Fuel Cells
,”
J. Power Sources
,
180
(
1
), pp.
1
14
.10.1016/j.jpowsour.2008.01.070
You do not currently have access to this content.