The La0.3Sr0.55Ti0.9Cr0.1O3-δ (LSTC10) anode material was synthesized by citric acid-nitrate process. The yttria-stabilized zirconia (YSZ) electrolyte-supported cell was fabricated by screen printing method using LSTC10 as anode and (La0.75Sr0.25)0.95MnO3-δ (LSM) as cathode. The electrochemical performance of cell was tested by using dry hydrogen as fuel and air as oxidant in the temperature range of 800–900 °C. At 900 °C, the open circuit voltage (OCV) and the maximum power density of cell are 1.08 V and 13.0 mW·cm−2, respectively. The microstructures of cell after performance testing were investigated by scanning electron microscope (SEM). The results show that the anode and cathode films are porous and closely attached to the YSZ electrolyte. LSTC10 is believed to be a kind of potential solid oxide fuel cell (SOFC) anode material.

References

References
1.
Singhal
,
S. C.
,
2000
, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
,
135
, pp.
305
313
.10.1016/S0167-2738(00)00452-5
2.
Mogensen
,
M.
,
Jensen
,
K. V.
, and
Jorgensen
,
M. J.
,
2002
, “
Progress in Understanding SOFC Electrodes
,”
Solid State Ionics
,
150
, pp.
123
129
.10.1016/S0167-2738(02)00269-2
3.
Irvine
,
J. T. S.
, and
Sauvet
,
A.
,
2001
, “
Improved Oxidation of Hydrocarbons With New Electrodes in High Temperature Fuel Cells
,”
Fuel Cells
,
1
, pp.
205
210
.10.1002/1615-6854(200112)1:3/4<205::AID-FUCE205>3.0.CO;2-5
4.
Gorte
,
R. J.
,
Kim
,
H.
, and
Vohs
,
J. M.
,
2002
, “
Novel SOFC Anodes for the Direct Electrochemical Oxidation of Hydrocarbon
,”
J. Power Sources
,
106
, pp.
10
15
.10.1016/S0378-7753(01)01021-7
5.
Matsuzaki
,
Y.
, and
Yasuda
,
I.
,
2000
, “
The Poisoning Effect of Sulfur-Containing Impurity Gas on a SOFC Anode: Part I. Dependence on Temperature, Time, and Impurity Concentration
,”
Solid State Ionics
,
132
, pp.
261
269
.10.1016/S0167-2738(00)00653-6
6.
Lu
,
Y. X.
, and
Laura
,
S.
,
2004
, “
A Solid Oxide Fuel Cell System Fed With Hydrogen Sulfide and Nature Gas
,”
J. Power Sources
,
135
, pp.
184
191
.10.1016/j.jpowsour.2004.04.012
7.
Waldbillig
,
D.
,
Wood
,
A.
,
Ivey
,
D. G.
,
2005
, “
Thermal Analysis of the Cyclic Reduction and Oxidation Behaviour of SOFC Anodes
,”
Solid State Ionics
,
176
, pp.
847
859
.10.1016/j.ssi.2004.12.002
8.
Simwonis
,
D.
,
Tietz
,
F.
, and
Stover
,
D.
,
2000
, “
Nickel Coarsening in Annealed Ni/8YSZ Anode Substrates for Solid Oxide Fuel Cells
,”
Solid State Ionics
,
132
, pp.
241
251
.10.1016/S0167-2738(00)00650-0
9.
Fagg
,
D. P.
,
Kharton
,
V. V.
,
Frade
,
J. R.
, and
Ferreira
,
A. A. L.
,
2003
, “
Stability and Mixed Ionic-Electronic Conductivity of (Sr,La)(Ti,Fe)O3-δ Perovskites
,”
Solid State Ionics
,
156
, pp.
45
57
.10.1016/S0167-2738(02)00257-6
10.
Gao
,
F.
,
Zhao
,
H. L.
, and
Li
,
X.
,
2008
, “
Preparation and Electrical Properties of Yttrium-Doped Strontium Titanate With B-Site Deficiency
,”
J. Power Sources
,
185
, pp.
26
31
.10.1016/j.jpowsour.2008.07.015
11.
Ruiz-Morales
,
J. C.
,
Canales-Vazquez
,
J.
, and
Savaniu
,
C.
,
2006
, “
Disruption of Extended Defects in Solid Oxide Fuel Cell Anodes for Methane Oxidation
,”
Nature
,
439
, pp.
568
571
.10.1038/nature04438
12.
Mukundan
,
R.
,
Brosha
,
E. L.
, and
Garzon
,
F. H.
,
2004
, “
Sulfur Tolerant Anodes for SOFCs
,”
Electrochem. Solid-State Lett.
,
7
, pp.
A5
A7
.10.1149/1.1627452
13.
Kurokawa
,
H.
,
Yang
,
L.
, and
Jacobson
,
C. P.
,
2007
, “
Y-Doped SrTiO3 Based Sulfur Tolerant Anode for Solid Oxide Fuel Cells
,”
J. Power Sources
,
64
, pp.
510
518
.10.1016/j.jpowsour.2006.11.048
14.
Marina
,
O. A.
,
Canfield
,
N. L.
, and
Stevenson
,
J. W.
,
2002
, “
Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate
,”
Solid State Ionics
,
149
, pp.
21
28
.10.1016/S0167-2738(02)00140-6
15.
Hui
,
S. Q.
, and
Petric
,
A.
,
2002
, “
Evaluation of Yttrium-Doped SrTiO3 as an Anode for Solid Oxide Fuel Cells
,”
J. Eur. Ceram. Soc.
,
22
, pp.
1673
1681
.10.1016/S0955-2219(01)00485-X
16.
Li
,
X.
,
Zhao
,
H. L.
, and
Zhou
,
X.
,
2010
, “
Electrical Conductivity and Structural Stability of La-Doped SrTiO3 With A-Site Deficiency as Anode Materials for Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Enery
,
35
, pp.
7913
7918
.10.1016/j.ijhydene.2010.05.043
17.
Slater
,
P. R.
,
Fagg
,
D. P.
, and
Irvine
,
J. T. S.
,
1997
, “
Synthesis and Electrical Characterisation of Doped Perovskite Titanates as Potential Anode Materials for Solid Oxide Fuel Cells
,”
J. Mater. Chem.
,
7
, pp.
2495
2498
.10.1039/a702865b
18.
Sfeir
,
J.
,
2003
, “
LaCrO3-Based Anodes: Stability Considerations
,”
J. Power Sources
,
118
, pp.
276
285
.10.1016/S0378-7753(03)00099-5
19.
Lu
,
H.
,
Zhu
,
L. L.
, and
Kim
,
J. P.
,
2012
, “
Perovskite La0.6Sr0.4B0.2Fe0.8O3-δ (B = Ti, Cr, Co) Oxides: Structural, Reduction-Tolerant, Sintering, and Electrical Properties
,”
Solid State Ionics
,
209–210
, pp.
24
29
.10.1016/j.ssi.2012.01.001
20.
Yi
,
F. Y.
,
Li
,
H.
, and
Chen
,
H. Y.
,
2013
, “
Preparation and Characterization of La and Cr Co-Doped SrTiO3 Materials for SOFC Anode
,”
Ceram. Int.
,
39
, pp.
347
352
.10.1016/j.ceramint.2012.06.032
21.
Yang
,
S. Q.
,
Chen
,
T.
, and
Wang
,
Y.
,
2013
, “
Electrochemical Analysis of an Anode-Supported SOFC
,”
Int. J. Electrochem. Sci.
,
8
(2), pp.
2330
2344
.
22.
Blennow
,
P.
,
Hansen
,
K. K.
,
Wallenberg
,
R. L.
, and
Mogensen
,
M.
,
2008
, “
Strontium Titanate-Based Composite Anodes for Solid Oxide Fuel Cells
,”
ECS Trans.
,
13
, pp.
181
194
.10.1149/1.3050390
You do not currently have access to this content.