Nafion-CaO, Nafion-ZrOH, and Nafion-CaO-ZrOH membranes are fabricated in order to improve proton conductivity, thermal stability, and mechanical properties as well as decrease methanol crossover in direct methanol fuel cells. The ion exchange method is utilized to incorporate Ca and Zr into Nafion membranes. Prepared membranes are characterized by using absorption transmission reflectance (ATR) and energy dispersive X-ray spectroscopy (EDS) techniques. Methanol crossover decreases significantly for all fabricated membranes. Nafion-CaO and Nafion-CaO-ZrOH membranes exhibit a 10 and 6 time increase in proton conductivity compared to Nafion (0.08 Scm–1), while the proton conductivity of Nafion-ZrOH decreases. The elastic modulus enhance from 48 MPa for Nafion to 60, 78, and 90 MPa for Nafion-CaO, Nafion-ZrOH, and Nafion-CaO-ZrOH membranes. In addition, the thermal stability of Nafion (360 °C) increases to 407, 457, and 470 °C for fabricated membranes.

References

References
1.
Dillon
,
R.
,
Srinivasan
,
S.
,
Arico
,
A. S.
, and
Antonucci
,
V.
,
2004
, “
International Activities in DMFC R&D: Status of Technologies and Potential Applications
,”
J. Power Sources
,
127
, pp.
112
126
.10.1016/j.jpowsour.2003.09.032
2.
Casciola
,
M.
,
Alberti
,
G.
,
Sganappa
,
M.
, and
Narducci
,
R.
,
2006
, “
On the Decay of Nafion Proton Conductivity at High Temperature and Relative Humidity
,”
J. Power Sources
,
162
, pp.
141
145
.10.1016/j.jpowsour.2006.06.023
3.
Matos
,
B. R.
,
Santiago
,
E. I.
,
Fonseca
,
F. C.
,
Linardia
,
M.
,
Lacerdab
,
R. G.
,
Lavayenb
,
V.
,
Ladeirab
,
L. O.
, and
Ferlautob
, A. S.
,
2007
, “
Titanate Nanotubes as Inorganic Fillers of Nafion Membranes for PEM Fuel Cell Operating at High Temperatures
,”
ECS Trans.
,
11
(1), pp.
143
150
.10.1149/1.2780924
4.
Arico
,
A. S.
,
Baglio
,
V.
,
Creti
,
P.
,
Blasi
,
A. D.
,
Antonucci
,
V.
,
Brunea
,
J.
,
Chapotot
,
A.
,
Bozzi
,
A.
, and
Schoemans
,
J.
,
2003
, “
Investigation of Grafted ETFE-Based Polymer Membranes as Alternative Electrolyte for Direct Methanol Fuel Cells
,”
J. Power Sources
,
123
, pp.
107
115
.10.1016/S0378-7753(03)00528-7
5.
Silva
,
R. F.
,
Francesco
,
M. D.
, and
Pozio
,
A.
,
2004
, “
Solution-Cast Nafion® Ionomer Membranes: Preparation and Characterization
,”
Electrochim. Acta
,
49
, pp.
3211
3219
.10.1016/j.electacta.2004.02.035
6.
Satterfield
,
M. B.
, and
Benziger
,
J. B.
,
2009
, “
Viscoelastic Properties of Nafion at Elevated Temperature and Humidity
,”
J. Polym. Sci.
,
47
, pp.
11
24
.10.1002/polb.21608
7.
Satterfield
,
M. B.
,
Majsztrik
,
P.
,
Ota
,
H.
,
Benziger
,
J. B.
, and
Bocarsly
,
A. B.
,
2006
, “
Mechanical Properties of Nafion and Titania/Nafion Composite Membranes for Polymer Electrolyte Membrane Fuel Cells
,”
J. Polym. Sci.
,
44
, pp.
2327
2345
.10.1002/polb.20857
8.
Casciola
,
M.
,
Capitani
,
D.
,
Donnadio
,
A.
,
Frittella
,
V.
,
Pica
,
M.
,
Sganappa
,
M.
, and
Varzi
,
A.
,
2008
, “
Nafion–Zirconium Phosphate Nanocomposite Membranes With High Filler Loadings: Conductivity and Mechanical Properties
,”
Fuel Cells
,
8
, pp.
217
224
.10.1002/fuce.200800005
9.
Park
,
Y. S.
, and
Yamazaki
,
Y.
,
2005
, “
Low Methanol Permeable and High Proton-Conducting Nafion/Calcium Phosphate Composite Membrane for DMFC
,”
Solid State Ionics
,
176
, pp.
1079
1089
.10.1016/j.ssi.2004.12.012
10.
Tang
,
H. L.
,
Pan
,
M.
,
Yuan
,
R. Z.
,
Jiang
,
S. P.
,
2005
, “
Modification of Nafion™ Membrane to Reduce Methanol Crossover Via Self-Assembled Pd Nanoparticles
,”
Mater. Lett.
,
59
, pp.
3766
3770
.10.1016/j.matlet.2005.07.013
11.
Adjemian
,
K. T.
,
Lee
,
S. J.
,
Srinvasan
,
S.
,
Benzigerb
,
J.
, and
Bocarslya
,
A. B.
,
2002
, “
Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80–140 °C
,”
J. Electrochem. Soc.
,
149
(
3
), pp.
A256
A261
.10.1149/1.1445431
12.
Jung
,
D. H.
,
Lee
,
C. H.
,
Kim
,
C. S.
, and
Shin
,
D. R.
,
1998
, “
Performance of a Direct Methanol Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
71
(
1-2
), pp.
169
173
.10.1016/S0378-7753(97)02793-6
13.
Lu
,
G. Q.
,
Wang
,
C. Y.
,
Yen
,
T. J.
, and
Zhang
,
X.
,
2004
, “
Development and Characterization of a Silicon-Based Micro Direct Methanol Fuel Cell
,”
Electrochim. Acta
,
49
, pp.
821
828
.10.1016/j.electacta.2003.09.036
14.
Mauritz
,
K. A.
, and
Payne
,
J. T.
,
2000
, “
Perfluorosulfonate Ionomer/Silicate Hybrid Membranes Via Base-Catalyzed In Situ Sol–Gel Processes for Tetraethylorthosilicate
,”
J. Membr. Sci.
,
168
, pp.
39
51
.10.1016/S0376-7388(99)00305-1
15.
Deng
,
Q.
,
Moore
,
R. B.
, and
Mauritz
,
K. A.
,
1998
, “
Nafion®/(SiO2, ORMOSIL, and Dimethylsiloxane) Hybrids Via In Situ Sol-Gel Reactions: Characterization of Fundamental Properties
,”
J. Appl. Polym. Sci.
,
68
, pp.
747
763
.10.1002/(SICI)1097-4628(19980502)68:5<747::AID-APP7>3.0.CO;2-O
16.
Linag
,
Z. X.
,
Zhao
,
T. S.
, and
Prabhuram
,
J.
,
2006
, “
Diphenyl Silicate Incorporated Nafion Membranes for Reduction of Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Membr. Sci.
,
283
, pp.
219
224
.10.1016/j.memsci.2006.06.031
17.
Grot
,
W. G.
, and
Rajendran
,
G.
,
1999
, “
Membranes Containing Inorganic and Membrane and Electrode Assemblies and Electrochemical Cells Employing Same
,” US Patent No. 5,919,583.
18.
Si
,
Y.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
,
2004
, “
Nafion-Teflon-Zr(HPO4)2 Composite Membranes for High-Temperature PEMFCs
,”
J. Electrochem. Soc.
,
151
, pp.
A623
A631
.10.1149/1.1651527
19.
Yang
,
C.
,
Srinivasan
,
S.
,
Arisco
,
A. S.
, and
Creti
,
P.
,
2001
,
Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature
,”
Solid State Lett.
,
4
, pp.
31
34
.10.1149/1.1353157
20.
Silva
,
V. S.
,
Ruffmann
,
B.
,
Silva
,
H.
,
Silva
,
V. B.
,
Mendes
,
A.
,
Maderra
,
L. M.
, and
Nunes
,
S.
,
2006
, “
Zirconium Oxide Hybrid Membranes for Direct Methanol Fuel Cells Evaluation of Transport Properties
,”
J. Membr. Sci.
,
284
, pp.
137
144
.10.1016/j.memsci.2006.07.027
21.
Mat
,
N. C.
, and
Liong
,
A.
,
2009
, “
Chitosan-Poly (Vinyl Alcohol) and Calcium Oxide Composite Membrane for Direct Methanol Fuel Cell Applications
,”
Eng. Lett.
,
116
, pp.
1017
1029
.
22.
Stati
,
P.
,
Minutoli
,
M.
, and
Hocevar
,
S.
,
2000
, “
Membranes Based on Phosphotungstic Acid and Polybenzimidazole for Fuel Cell Application
,”
J. Power Sources
,
90
, pp.
231
235
.10.1016/S0378-7753(00)00401-8
23.
Stati
,
P.
,
Arico
,
A. S.
,
Baglio
,
V.
,
Lufrano
,
F.
,
Passalacqua
,
E.
, and
Antonucci
,
V.
,
2001
, “
Hybrid Nafion–Silica Membranes Doped With Heteropolyacids for Application in Direct Methanol Fuel Cells
,”
Solid State Ionics
,
145
, pp.
101
107
.10.1016/S0167-2738(01)00919-5
24.
Montoneri
,
E.
,
Bottigliengo
,
S.
,
Casciola
,
M.
,
Sganappa
,
M.
,
Marigo
,
A.
, and
Speranza
,
G.
,
2010
, “
A New Poly Functional Acid Material for Solid State Proton Conductivity in Dry Environment: Nafion Doped With Difluromethandiphosphonic Acid
,”
Solid State Ionics
,
181
, pp.
578
585
.10.1016/j.ssi.2010.03.001
25.
Kreuer
,
K. D.
,
2001
, “
On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells
,”
J. Membr. Sci.
,
185
, pp.
29
39
.10.1016/S0376-7388(00)00632-3
26.
Sen
,
U.
,
Celik
,
S. U.
,
Ata
,
A.
, and
Bozkurt
,
A.
,
2008
, “
Anhydrous Proton Conducting Membranes for PEM Fuel Cells Based on Nafion/Azole Composites
,”
J. Hydrogen Energy
,
33
, pp.
2808
2815
.10.1016/j.ijhydene.2008.03.007
27.
Casciola
,
M.
,
Capitani
,
D.
,
Commite
,
A.
,
Donnadio
,
A.
,
Frittella
,
V.
,
Pica
,
M.
,
Sganappa
,
M.
, and
Varzi
,
A.
,
2008
, “
Nafion-Zirconium Phosphate Nanocomposite Membranes With High Filer Loadings: Conductivity and Mechanical Properties
,”
Fuel Cells
,
8
, pp.
217
224
.10.1002/fuce.200800005
28.
Chen
,
L. C.
,
Yu
,
T. L.
,
Lin
,
H. L.
, and
Yeh
,
S. H.
,
2008
, “
Nafion/PTFE and Zirconium Phosphate Modified Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cells
,”
J. Membr. Sci.
,
307
, pp.
10
20
.10.1016/j.memsci.2007.03.008
29.
Do
,
J. S.
, and
Liou
,
B. C.
,
2011
, “
A Mixture Design Approach to Optimizing the Cathodic Compositions of Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
196
, pp.
1864
1871
.10.1016/j.jpowsour.2010.09.045
30.
Kim
,
J.
,
Kim
,
B.
, and
Jung
,
B.
,
2002
, “
Proton Conductivities and Methanol Permeabilities of Membranes Made From Partially Sulfonated Polystyrene-Block-Poly(Ethylene-Ran-Butylene)-Block-Polystyrene Copolymer
,”
J. Membr. Sci.
,
207
, pp.
129
137
.10.1016/S0376-7388(02)00138-2
31.
Tricoli
,
V.
,
1998
, “
Proton and Methanol Transport in Poly(Perfluoro-Sulfonate) Membranes Containing Cs+ and H+ Cations
,”
J. Electrochem. Soc.
,
145
, pp.
3798
3801
.10.1149/1.1838876
32.
Sarkar
,
D.
,
Mohapatra
,
D.
,
Ray
,
S.
,
Bhattacharyya
,
S.
,
Adak
,
S.
, and
Mitra
,
N.
,
2007
, “
Nanostructured Al2O3–ZrO2 Composite Synthesized by Sol–Gel Technique: Powder Processing and Microstructure
,”
J. Mater. Sci.
,
42
, pp.
1847
1855
.10.1007/s10853-006-0737-9
33.
Zhao
,
Y.
,
Jiang
,
Z.
,
Xiao
,
L.
,
Xu
,
T.
,
Qiao
,
T. S.
, and
Wu
,
H.
,
2011
, “
Chitosan Membranes Filled With Biomimetric Mineralized Hydroxyapatite for Enhanced Proton Conductivity
,”
Solid State Ionics
,
187
, pp.
33
38
.10.1016/j.ssi.2011.01.019
34.
Choi
,
P.
,
Jalani
,
N. H.
, and
Datta
,
R.
,
2005
, “
Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity
,”
J. Electrochem. Soc.
,
152
, pp.
E123
E130
.10.1149/1.1859814
35.
Du
,
C.
,
Zhao
,
T.
, and
Yang
,
W.
,
2007
, “
Effect of Methanol Crossover on the Cathode Behavior of a DMFC: A Half-Cell Investigation
,”
Electrochim. Acta
,
52
, pp.
5266
5271
.10.1016/j.electacta.2007.01.089
36.
Park
,
H. B.
,
Shin
,
H. S.
,
Lee
,
Y. M.
, and
Rhim
,
J. W.
,
2005
, “
Annealing Effect of Sulfonated Polysulfone Ionomer Membranes on Proton Conductivity and Methanol Transport
,”
J. Membr. Sci.
,
247
, pp.
103
110
.10.1016/j.memsci.2004.09.023
37.
Clark
,
J.
, and
Macquarrie
,
D.
, eds.,
2002
,
Handbook of Green Chemistry and Technology
, Wiley-Blackwell,
London
.
38.
Gürsel
,
S. A.
, Gubler, L., Gupta, B., and Scherer, G. G.,
2008
, “Radiation Grafted Membranes,”
Fuel Cells I
(Advances in Polymer Science Vol. 215), Springer,
Berlin
, pp. 157–217.10.1007/12_2008_153
39.
Mahreni
,
A.
,
Mohamad
,
A. B.
,
Kadhum
,
A. A. H.
,
Daud
,
W. R. W.
, and
Iyuke
,
S. E.
,
2009
, “
Nafion/Silicon Oxide/Phosphotungstic Acid Nanocomposite Membrane With Enhanced Proton Conductivity
,”
J. Membr. Sci.
,
18
, pp.
32
40
.10.1016/j.memsci.2008.10.048
40.
Uversky
,
V.
, and
Permyakov
,
E.
, eds.,
2001
,
Methods in Protein Structure and Stability Analysis
, Nova Science Publishers,
New York
.
You do not currently have access to this content.