The design and balance-of-plant of a novel anaerobic digestion (AD) biogas solid oxide fuel cell (SOFC) plant is assessed. Biogas from waste-water treatment plant is the fuel feeding the SOFC system. Simultaneous multigeneration of electricity, heat and a fuel (algae, in our case) via exhaust carbon recycling is accomplished in the proposed plant configuration. CO2 capture from the SOFC anode exhaust is carried out through an oxy-combustion reactor that completes the oxidation of spent fuel still available downstream of the fuel cell. The captured CO2, after water condensation, is thus fed to an array of photo-bioreactors where C biofixation in algae is achieved. The design of the main plant sections, including the gas cleaning unit, fuel processor, SOFC “hot-box,” oxy-combustor, CO2/H2O condensation unit and photo-bioreactors, is provided. A system analysis of a full-scale version of the biogas SOFC power plant with optimized heat integration is finally analyzed to fully understand the potential of the proposed integrated energy system. An overall electrical efficiency exceeding 52% (LHV basis) was calculated. Sensitivity analyses have been carried out in order to study the influence of fuel utilization, internal reforming, biogas composition and steam-to-carbon ratio on both SOFC and overall plant performance.

References

References
1.
SOFCOM, 2011, “SOFC CCHP With Poly-Fuel: Operation and Maintenance,” http://areeweb.polito.it/ricerca/sofcom
2.
Margalef
,
P.
,
Brown
,
T.
,
Brouwer
,
J.
,
Samuelsen
,
S.
,
2011
, “
Conceptual Design and Configuration Performance Analyses of Polygenerating High Temperature Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
, pp.
10044
10056
.10.1016/j.ijhydene.2011.05.072
3.
Margalef
,
P.
,
Brown
,
T.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2011
, “
Efficiency of Poly-Generating High Temperature Fuel Cells
,”
J. Power Sources
,
196
, pp.
2055
2060
.10.1016/j.jpowsour.2010.10.046
4.
Margalef
,
P.
,
Brown
,
T. M.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2012
, “
Efficiency Comparison of Tri-Generating HTFC to Conventional Hydrogen Production Technologies
,”
Int. J. Hydrogen Energy
,
37
, pp.
9853
9862
.10.1016/j.ijhydene.2012.03.099
5.
FuelCell Energy Inc., 2013, “FuelCell Energy: Ultra Clean, Efficient, Reliable Power” http://www.fuelcellenergy.com
6.
Bloom Energy, 2011, “Bloom Energy Solid Oxide Fuel Cells,” http://www.bloomenergy.com
7.
Ezgi
,
C.
,
Turhan Çoban
,
M.
, and
Selvi
,
Ö.
,
2013
, “
Design and Thermodynamic Analysis of an SOFC System for Naval Surface Ship Application
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
3
), p.
031006
.10.1115/1.4024254
8.
Leone
,
P.
, and
Lanzini
,
A.
,
2013
, “
Experimental Modeling of Transients in Large SOFC Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
1
), p. 011004.10.1115/1.4023217
9.
Wang
,
S.
,
Wu
,
C.
,
Liu
,
S.
, and
Yuan
,
P.
,
2013
, “
Performance Optimization and Selection of Operating Parameters for a Solid Oxide Fuel Cell Stack
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
5
), p.
051005
.10.1115/1.4024966
10.
McLarty
,
D.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2013
, “
Hybrid Fuel Cell Gas Turbine System Design and Optimization
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
4
), p.
041005
.10.1115/1.4024569
11.
Van Herle
,
J.
,
Membrez
,
Y.
, and
Bucheli
,
O.
,
2004
, “
Biogas as a Fuel Source for SOFC Co-Generators
,”
J. Power Sources
,
127
, pp.
300
312
.10.1016/j.jpowsour.2003.09.027
12.
Van Herle
,
J.
,
Maréchal
,
F.
,
Leuenberger
,
S.
,
Membrez
,
Y.
,
Bucheli
,
O.
, and
Favrat
,
D.
,
2004
, “
Process Flow Model of Solid Oxide Fuel Cell System Supplied With Sewage Biogas
,”
J. Power Sources
,
131
, pp.
127
141
.10.1016/j.jpowsour.2004.01.013
13.
Van Herle
,
J.
,
Maréchal
,
F.
,
Leuenberger
,
S.
, and
Favrat
,
D.
,
2003
, “
Energy Balance of a SOFC Cogenerator Operated With Biogas
,”
J. Power Sources
,
118
, pp.
375
383
.10.1016/S0378-7753(03)00103-4
14.
Trendewicz
,
A. A.
, and
Braun
,
R. J.
,
2013
, “
Techno-Economic Analysis of Solid Oxide Fuel Cell-Based Combined Heat and Power Systems for Biogas Utilization at Wastewater Treatment Facilities
,”
J. Power Sources
,
233
, pp.
380
393
.10.1016/j.jpowsour.2013.01.017
15.
Sánchez
,
D.
,
Monje.
B.
,
Chacartegui
,
R.
, and
Campanari
,
S.
,
2013
, “
Potential of Molten Carbonate Fuel Cells to Enhance the Performance of CHP Plants in Sewage Treatment Facilities
,”
Int. J. Hydrogen Energy
,
38
, pp.
394
405
.10.1016/j.ijhydene.2012.09.145
16.
Dionissios
,
D.
,
Papadias
,
S. A.
, and
Romesh
,
K.
,
2012
, “
Fuel Quality Issues With Biogas Energy—An Economic Analysis for a Stationary Fuel Cell System
,”
Energy
,
44
, pp.
257
277
.10.1016/j.energy.2012.06.031
17.
SOFCOM Project,
2012
, “
Analysis of the Operation of the SMAT (Torino) Sewage Plant and Record of Historical Data
,” Deliverable No. 4.1, www.sofcom.eu
18.
Papurello
,
D.
,
Soukoulis
,
C.
,
Schuhfried
,
E.
,
Cappellin
,
L.
,
Gasperi
,
F.
,
Silvestri
,
S.
,
Santarelli
,
M.
, and
Biasioli
,
F.
,
2012
, “
Monitoring of Volatile Compound Emissions During Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry
,”
Bioresour. Technol.
,
126
, pp.
254
265
.10.1016/j.biortech.2012.09.033
19.
Novosel
,
B.
,
Marinšek
,
M.
, and
Maček
,
J.
,
2012
, “
Deactivation of Ni-YSZ Material in Dry Methane and Oxidation of Various Forms of Deposited Carbon
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
6
), p.
061003
.10.1115/1.4007272
20.
Yu
,
J.
,
Wang
,
Y.
, and
Weng
,
S.
,
2012
, “
Numerical Analysis of the Possibility of Carbon Formation in Planar SOFC Fueled With Syngas
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
2
), p.
021011
.10.1115/1.4005625
21.
Graves
,
C.
,
Ebbesen
,
S. D.
, and
Mogensen
,
M.
,
2011
, “
Co-Electrolysis of CO2 and H2O in Solid Oxide Cells: Performance and Durability
,”
Solid State Ionics
,
192
, pp.
398
403
.10.1016/j.ssi.2010.06.014
22.
Thijssen
, J. H.,
2009
, “
Stack Operating Strategy for Central Station SOFC
,” 2009 Fuel Cell Seminar, Palm Springs, CA, November 16–19.
23.
Abdollahzadeh Jamalabadi
,
M. Y.
,
2013
, “
Electrochemical and Exergetic Modeling of a Combined Heat and Power System Using Tubular Solid Oxide Fuel Cell and Mini Gas Turbine
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
5
), p.
051007
.10.1115/1.4025053
24.
Lisbona
,
P.
,
Corradetti
,
A.
,
Bove
,
R.
, and
Lunghi
,
P.
,
2007
, “
Analysis of a Solid Oxide Fuel Cell System for Combined Heat and Power Applications Under Non-Nominal Conditions
,”
Electrochim. Acta
,
53
, pp.
1920
1930
.10.1016/j.electacta.2007.08.046
25.
Wuillemin
, Z.,
2009
, “
Experimental and Modeling Investigations on Local Performance and Local Degradation in Solid Oxide Fuel Cells
,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
26.
Fogler, H. S., and Gurmen, M. N., 2008, “Fuller Equation Theory,” Elements of Chemical Reaction Engineering, University of Michigan, Ann Arbor, MI, Chap. 11, http://www.umich.edu/~elements/course/lectures/eleven/exam4.htm
27.
Pfeifer
,
T.
,
Nousch
,
L.
,
Lieftink
,
D.
, and
Modena
S.
,
2013
, “
System Design and Process Layout for a SOFC Micro-CHP Unit With Reduced Operating Temperatures
,”
Int. J. Hydrogen Energy
,
38
, pp.
431
439
.10.1016/j.ijhydene.2012.09.118
28.
Kuramochi
,
T.
,
Turkenburg
,
W.
, and
Faaij
,
A.
,
2011
, “
Competitiveness of CO2 Capture From an Industrial Solid Oxide Fuel Cell Combined Heat and Power System in the Early Stage of Market Introduction
,”
Fuel
,
90
, pp.
958
973
.10.1016/j.fuel.2010.10.028
30.
“Italian Renewable Energy Action Plan,” 2009, http://ec.europa.eu/energy/renewables/action_plan_en.htm.
31.
Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., and Janssen, R., 2008, “Biogas Handbook,” University of Southern Denmark Esbjerg, Esbjerg, Denmark, http://www.lemvigbiogas.com/BiogasHandbook.pdf
32.
ENAMA, 2010, “Enama, Ente Nazionale per la Meccanizzazione Agricola—Biomass Project,” http://www.enama.it/it/biomasse_eimaenergy.php
34.
National Energy Technology Laboratory,
2010
, “
Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity
,” U.S. Department of Energy, Paper No. DOE/NETL-2010/1397.
35.
National Energy Technology Laboratory,
2011
, “
Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia
,” U.S. Department of Energy, Paper No. DOE/NETL- 2010/1402.
You do not currently have access to this content.