Major efforts are underway to reduce fuel cell manufacturing costs, thereby facilitating widespread adoption of fuel cell technology in emerging applications, such as combined heat and power and transportation. This research investigates new methods for fabricating membrane electrode assemblies (MEAs), which are at the core of fuel cell technology. A key manufacturing step in the production of fuel cell MEAs is bonding two electrodes to an ionically conductive membrane. In particular, new MEA bonding methods are examined for polybenzimidazole-based phosphoric acid (PBI/PA) fuel cells. Two new methods of bonding PBI/PA fuel cell MEAs were studied with the goal of reducing cycle time to reduce manufacturing costs. Specifically, the methods included ultrasonic bonding and thermally bonding with advance process control (APC thermal). The traditional method of thermally bonding PBI MEAs requires 30 seconds, whereas the new bonding methods reduce the cycle time to 2 and 8 seconds, respectively. Ultrasonic bonding was also shown to significantly reduce the energy consumed by the bonding process. Adverse effects of the new bonding methods on cell performance and structure were not observed. Average cell voltages at 0.2 A/cm2 for ultrasonic, APC thermal, and thermally bonded MEAs were 650 mV, 651 mV, and 641 mV, respectively. The platinum crystallite size was found to be the same before and after ultrasonic bonding using XRD. Furthermore, changes in the electrode pore structure were not observed in SEM images taken after ultrasonic bonding. The test results show that it is possible to reduce manufacturing costs by switching to faster methods of bonding PBI phosphoric acid fuel cell MEAs.

References

References
1.
ClearEdge Power, 2013, “Energy Solutions: Clean, Critical, Secure,” ClearEdge Power, Sunnyvale, CA, http://www.clearedgepower.com/commercial/clearedge5-hydrogen-fuel-cell
2.
Holladay
,
J. D.
,
Wainright
,
J. S.
,
Jones
,
E. O.
, and
Gano
,
S. R.
,
2004
, “
Power Generation Using a Mesoscale Fuel Cell Integrated With a Microscale Fuel Processor
,”
J. Power Sources
,
130
(
1–2
), pp.
111
118
.10.1016/j.jpowsour.2003.11.055
3.
Li
,
Q.
,
He
,
R.
,
Jensen
,
J. O.
, and
Bjerrum
,
N. J.
,
2004
, “
PBI-Based Polymer Membranes for High Temperature Fuel Cells—Preparation, Characterization and Fuel Cell Demonstration
,”
Fuel Cells
,
4
(
3
), pp.
147
159
.10.1002/fuce.200400020
4.
Yang
,
C.
,
Costamagna
,
P.
,
Srinivasan
,
S.
,
Benziger
,
J.
, and
Bocarsly
,
A. B.
,
2001
, “
Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
103
(
1
), pp.
1
9
.10.1016/S0378-7753(01)00812-6
5.
Xiao
,
L.
,
Zhang
,
H.
,
Jana
,
T.
,
Scanlon
,
E.
,
Chen
,
R.
,
Choe
,
E. W.
,
Ramanathan
,
L. S.
,
Yu
,
S.
, and
Benicewicz
B. C.
,
2005
, “
Synthesis and Characterization of Pyridine-Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications
,”
Fuel Cells
,
5
(
2
), pp.
287
295
.10.1002/fuce.200400067
6.
Korsgaard
,
A. R.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
,
2008
, “
Part One: A Novel Model of HTPEM-Based Micro-Combined Heat and Power Fuel Cell System
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1909
1920
.10.1016/j.ijhydene.2008.01.009
7.
B2PCOE
,
2012
,
Manufacturing Fuel Cell Manhattan Project
,
ACI Technologies
, Philadelphia, PA.
8.
Puffer
,
R.
, and
Rock
,
S.
,
2009
, “
Recent Advances in High Temperature Proton Exchange Membrane Fuel Cell Manufacturing
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
4
), p.
041013
.10.1115/1.3006376
9.
Snelson
,
T.
,
2011
, “
Ultrasonic Sealing of PEM Fuel Cell Membrane Electrode Assemblies
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
10.
Grewell
,
D.
,
Benatar
,
A.
, and
Park
,
J.
,
2003
,
Plastics and Composites Welding Handbook
,
Carl Hanser Verlag
,
Munich, Germany
.
11.
Beck
,
J.
,
Walczyk
,
D.
,
Hoffman
,
C.
, and
Buelte
,
S.
,
2012
, “
Ultrasonic Bonding of Membrane Electrode Assemblies for Low Temperature Proton Exchange Membrane Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
5
), p.
051005
.10.1115/1.4007136
12.
Gullotta
,
J.
,
Krishnan
,
L.
,
Share
,
D.
,
Walczyk
,
D.
, and
Puffer
,
R. J.
,
2010
, “
Adaptive Process Control and In-Situ Diagnostics for High Temperature PEM MEA Manufacturing
,”
ASME
Paper No. FuelCell2010-3323110.1115/FuelCell2010-33231.
13.
Xiao
,
L.
,
Zhang
,
H.
,
Scanlon
,
E.
,
Ramanathan
,
L. S.
,
Choe
,
E.-W.
,
Rogers
,
D.
,
Apple
,
T.
, and
Benicewicz
,
B. C.
,
2005
, “
High-Temperature Polybenzimidazole Fuel Cell Membranes Via a Sol-Gel Process
,”
Chem. Mater.
,
17
(
21
), pp.
5328
5333
.10.1021/cm050831+
14.
Cutlip
,
M.
,
Yang
,
S.
, and
Stonehart
,
P.
,
1991
, “
Simulation and Optimization of Porous Electrodes Used in Hydrogen Oxygen Phosphoric Acid Fuel Cells
,”
Electrochim. Acta
,
36
(
314
), pp.
547
553
.10.1016/0013-4686(91)85139-X
15.
Conway
,
B. E.
, and
Pell
,
W. G.
,
2002
, “
Power Limitations of Supercapacitor Operation Associated With Resistance and Capacitance Distribution in Porous Electrode Devices
,”
J. Power Sources
,
105
, pp.
169
181
.10.1016/S0378-7753(01)00936-3
16.
Christner
,
L.
, and
George
,
M.
,
1981
, “
Electrode Optimization for Phosphoric Acid Fuel Cells. Final Report
,” Energy Research Corp. Report No. DOE/ET/13114-T8.
17.
Yu
,
S.
,
Zhang
,
H.
,
Xiao
,
L.
,
Choe
,
E.-W.
, and
Benicewicz
,
B. C.
,
2009
, “
Synthesis of Poly (2,2′-(1,4-phenylene) 5,5′-bibenzimidazole) (para-PBI) and Phosphoric Acid Doped Membrane for Fuel Cells
,”
Fuel Cells
,
9
(
4
), pp.
318
324
.10.1002/fuce.200900062
18.
Perry
,
K. A.
,
Eisman
,
G. A.
, and
Benicewicz
,
B. C.
,
2008
, “
Electrochemical Hydrogen Pumping Using a High-Temperature Polybenzimidazole (PBI) Membrane
,”
J. Power Sources
,
177
(
2
), pp.
478
484
.10.1016/j.jpowsour.2007.11.059
19.
Shi
,
W.
, and
Little
,
T.
,
2000
, “
Mechanisms of Ultrasonic Joining of Textile Materials
,”
Int. J. Clothing Sci. Technol.
,
12
(
5
), pp.
331
350
.10.1108/09556220010377869
20.
Emerson Industrial Automation
, 2013, “Plastics Joining Literature,” White Papers TL-2 and PW-2, http://www.emersonindustrial.com/en-US/branson/Products/plastic-joining/Pages/PlasticJoiningLiterature.aspx
21.
Jalani
,
N. H.
,
Ramani
,
M.
,
Ohlsson
,
K.
,
Buelte
,
S.
,
Pacifico
,
G.
,
Pollard
,
R.
,
Staudt
,
R.
, and
Datta
,
R.
,
2006
, “
Performance Analysis and Impedance Spectral Signatures of High Temperature PBI-Phosphoric Acid Gel Membrane Fuel Cells
,”
J. Power Sources
,
160
(
2
), pp.
1096
1103
.10.1016/j.jpowsour.2006.02.094
22.
Wagner
,
N.
,
2002
, “
Characterization of Membrane Electrode Assemblies in Polymer Electrolyte Fuel Cells Using a.c. Impedance Spectroscopy
,”
J. Appl. Electrochem.
,
32
(
8
), pp.
859
863
.10.1023/A:1020551609230
23.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1996
, “
Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy
,”
J. Electrochem. Soc.
,
143
(
2
), pp.
587
599
.10.1149/1.1836485
24.
Cullity
,
B. D.
, and
Stock
,
S. R.
,
2001
,
Elements of X-Ray Diffraction
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
Aragane
,
J.
,
Urushibata
,
H.
, and
Murahashi
,
T.
,
1996
, “
Effect of Operational Potential on Performance Decay Rate in a Phosphoric Acid Fuel Cell
,”
J. Appl. Electrochem.
,
26
(
2
), pp.
147
152
.10.1007/BF00364064
26.
Qi
,
Z.
, and
Buelte
,
S.
,
2006
, “
Effect of Open Circuit Voltage on Performance and Degradation of High Temperature PBI-H3PO4 Fuel Cells
,”
J. Power Sources
,
161
(
2
), pp.
1126
1132
.10.1016/j.jpowsour.2006.06.020
27.
Landsman
,
D. A.
, and
Luczak
,
F. J.
,
2003
, “
Catalyst Studies and Coating Technologies
,”
Handbook of Fuel Cells
,
W.
Vielstich
,
A.
Lamm
,
H. A.
Gasteiger
, and
H.
Yokokawa
, eds.,
Wiley
,
New York
, p.
824
.
28.
Stonehart
,
P.
,
1992
, “
Development of Alloy Electrocatalysts for Phosphoric Acid Fuel Cells (PAFC)
,”
J. Appl. Electrochem.
,
22
(
11
), pp.
995
1001
.10.1007/BF01029576
29.
Prasanna
,
M.
,
Ha
,
H. Y.
,
Cho
,
E. A.
,
Hong
,
S.-A.
, and
Oh
,
I.-H.
,
2004
, “
Investigation of Oxygen Gain in Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
137
(
1
), pp.
1
8
.10.1016/j.jpowsour.2004.05.034
30.
Buelte
,
S. J.
,
2011
, “
Effects of Phosphoric Acid Concentration on Platinum Catalyst and Phosphoric Acid Hydrogen Pump Performance
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
31.
Jaouen
,
F.
, and
Lindbergh
,
G.
,
2003
, “
Transient Techniques for Investigating Mass-Transport Limitations in Gas Diffusion Electrodes
,”
J. Electrochem. Soc.
,
150
(
12
), p.
A1699
.10.1149/1.1624294
32.
Maillard
,
F.
,
Martin
,
M.
,
Gloaguen
,
F.
, and
Le
,
J.
,
2002
, “
Oxygen Electroreduction on Carbon-Supported Platinum Catalysts. Particle-Size Effect on the Tolerance to Methanol Competition
,”
Electrochim. Acta
,
47
, pp.
3431
3440
.10.1016/S0013-4686(02)00279-7
You do not currently have access to this content.