A physical model is developed to study the coupled mass and charge transport in a permselective membrane-free alkaline direct ethanol fuel cell. This type of fuel cell is not only free of expensive ion exchange membranes and platinum based catalysts, but also features a facile oxygen reduction reaction due to the presence of alkaline electrolyte. The proposed model is first validated by comparing its predictions to the experimental results from literature and then used to predict the overall performance of the cell and reveal the details of ion transport, distribution of electrolyte potential and current density. It is found that: (1) KOH concentration lower than 1 M notably impairs cell performance due to low electrolyte conductivity; (2) the concentration gradient and electrical field are equally important in driving ion transport in the electrolyte; (3) the current density distributions in the anode and cathode catalyst layers keep nonuniform due to different reasons. In the anode, it is caused by the ethanol concentration gradient, while in the cathode it is because of the electrolyte potential gradient; and (4) at low cell voltage, current density distribution in the catalyst layer shows stronger nonlinearity in the anode than in the cathode.

References

References
1.
Yu
,
E. H.
,
Krewer
,
U.
, and
Scott
,
K.
,
2010
, “
Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells
,”
Energies
,
3
(
8
), pp.
1499
1528
.10.3390/en3081499
2.
Zhang
,
R. M.
,
Pope
,
J.
, and
Pan
,
Y. H.
,
2011
, “
Permselective Membrane-Free Direct Fuel Cell and Components Thereof
,”
U.S. Patent No. 2011/0123902 A1
.
3.
Li
,
Y. S.
,
Zhao
,
T. S.
, and
Liang
,
Z. X.
,
2009
, “
Effect of Polymer Binders in Anode Catalyst Layer on Performance of Alkaline Direct Ethanol Fuel Cells
,”
J. Power Sources
,
190
(
2
), pp.
223
229
.10.1016/j.jpowsour.2009.01.055
4.
Li
,
Y. S.
,
Zhao
,
T. S.
, and
Liang
,
Z. X.
,
2009
, “
Performance of Alkaline Electrolyte-Membrane-Based Direct Ethanol Fuel Cells
,”
J. Power Sources
,
187
(
2
), pp.
387
392
.10.1016/j.jpowsour.2008.10.132
5.
Lue
,
S. J.
,
Pan
,
W.-H.
,
Chang
,
C.-M.
, and
Liu
,
Y.-L.
,
2012
, “
High-Performance Direct Methanol Alkaline Fuel Cells Using Potassium Hydroxide-Impregnated Polyvinyl Alcohol/Carbon Nano-Tube Electrolytes
,”
J. Power Sources
,
202
, pp.
1
10
.10.1016/j.jpowsour.2011.10.091
6.
Jamard
,
R.
,
Latour
,
A.
,
Salomon
,
J.
,
Capron
,
P.
, and
Martinent-Beaumont
,
A.
,
2008
, “
Study of Fuel Efficiency in a Direct Borohydride Fuel Cell
,”
J. Power Sources
,
176
(
1
), pp.
287
292
.10.1016/j.jpowsour.2007.10.036
7.
Mench
,
M. M.
,
2008
,
Fuel Cell Engines
,
Wiley
,
New York
.
8.
Verma
,
A.
, and
Basu
,
S.
,
2005
, “
Direct Use of Alcohols and Sodium Borohydride as Fuel in an Alkaline Fuel Cell
,”
J. Power Sources
,
145
(
2
), pp.
282
285
.10.1016/j.jpowsour.2004.11.071
9.
Verma
,
A.
, and
Basu
,
S.
,
2007
, “
Experimental Evaluation and Mathematical Modeling of a Direct Alkaline Fuel Cell
,”
J. Power Sources
,
168
(
1 SPEC. ISS.
), pp.
200
210
.10.1016/j.jpowsour.2007.02.069
10.
Sprague
, I
. B.
, and
Dutta
,
P.
,
2011
, “
Modeling of Diffuse Charge Effects in a Microfluidic Based Laminar Flow Fuel Cell
,”
Numer. Heat Transfer
, Part A,
59
(
1
), pp.
1
27
.10.1080/10407782.2010.523299
11.
Jo
,
J. H.
,
Moon
,
S. K.
, and
Yi
,
S. C.
,
2000
, “
Simulation of Influences of Layer Thicknesses in an Alkaline Fuel Cell
,”
J. Appl. Electrochem.
,
30
(
9
), pp.
1023
1031
.10.1023/A:1004046721157
12.
Jo
,
J. H.
, and
Yi
,
S. C.
,
1999
, “
A Computational Simulation of an Alkaline Fuel Cell
,”
J. Power Sources
,
84
(
1
), pp.
87
106
.10.1016/S0378-7753(99)00309-2
13.
Bahrami
,
H.
, and
Faghri
,
A.
,
2012
, “
Multi-Layer Membrane Model for Mass Transport in a Direct Ethanol Fuel Cell Using an Alkaline Anion Exchange Membrane
,”
J. Power Sources
,
218
, pp.
286
296
.10.1016/j.jpowsour.2012.06.057
14.
Bahrami
,
H.
, and
Faghri
,
A.
,
2012
, “
Start-up and Steady-State Operation of a Passive Vapor-Feed Direct Methanol Fuel Cell Fed With Pure Methanol
,”
Int. J. Hydrogen Energy
,
37
(
10
), pp.
8641
8658
.10.1016/j.ijhydene.2012.02.038
15.
Bahrami
,
H.
, and
Faghri
,
A.
,
2011
, “
Water Management in a Passive DMFC Using Highly Concentrated Methanol Solution
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
2
), p.
021011
.10.1115/1.4002315
16.
Liang
,
Z. X.
,
Zhao
,
T. S.
,
Xu
,
J. B.
, and
Zhu
,
L. D.
,
2009
, “
Mechanism Study of the Ethanol Oxidation Reaction on Palladium in Alkaline Media
,”
Electrochim. Acta
,
54
(
8
), pp.
2203
2208
.10.1016/j.electacta.2008.10.034
17.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
New York
.
18.
Bahrami
,
H.
, and
Faghri
,
A.
,
2010
, “
Transient Analysis of a Passive Direct Methanol Fuel Cell Using Pure Methanol
,”
J. Electrochem. Soc.
,
157
(
12
), pp.
B1762
B1776
.10.1149/1.3491449
19.
Faghri
,
A.
,
Zhang
,
Y. W.
, and
Howell
,
J.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital Press
,
Columbia, MO
.
20.
Zhang
,
L.
,
Wang
,
Q.
,
Liu
,
Y. C.
, and
Zhang
,
L. Z.
,
2006
, “
On the Mutual Diffusion Properties of Ethanol-Water Mixtures
,”
J. Chem. Phys.
,
125
(
10
), p.
104502
.10.1063/1.2244547
21.
Koryta
,
J.
,
Dvorak
,
J.
, and
Kavan
,
L.
,
1993
,
Principles of Electrochemistry
,
Wiley
,
New York
.
22.
Bhatia
,
R. N.
,
Gubbins
,
K. E.
, and
Walker
,
R. D.
,
1968
, “
Mutual Diffusion in Concentrated Aqueous Potassium Hydroxide Solutions
,”
Trans. Faraday Soc.
,
64
, pp.
2091
2099
.10.1039/tf9686402091
23.
Quist
,
A. S.
, and
Marshall
,
W. L.
,
1965
, “
Assignment of Limiting Equivalent Conductances for Single Ions to 400 Deg
,”
J. Phys. Chem.
,
69
(
9
), pp.
2984
2987
.10.1021/j100893a027
24.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
2001
,
Electrochemical Methods: Fundamentals and Applications
,
Wiley
,
New York
.
25.
Gilliam
,
R. J.
,
Graydon
,
J. W.
,
Kirk
,
D. W.
, and
Thorpe
,
S. J.
,
2007
, “
A Review of Specific Conductivities of Potassium Hydroxide Solutions for Various Concentrations and Temperatures
,”
Int. J. Hydrogen Energy
,
32
, pp.
359
364
.10.1016/j.ijhydene.2006.10.062
26.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis
,
London
.
27.
Bahrami
,
H.
, and
Faghri
,
A.
,
2011
, “
Exergy Analysis of a Passive Direct Methanol Fuel Cell
,”
J. Power Sources
,
196
(
3
), pp.
1191
1204
.10.1016/j.jpowsour.2010.08.087
28.
Newman
,
J. S.
,
1991
,
Electrochemical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.