This paper reports a new study where relatively long-term tests of about a 1000 h are performed on several planar anode-supported solid oxide fuel cells. The cell electrochemical behaviors are studied by using voltage-current density measurement, electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The cell total polarization obtained from electrochemical impedance spectroscopy results is shown to be consistent with the area-specific resistance calculated from the voltage-current density curve over the course of the test. In addition, a four-constant phase element model is used to analyze the cell components resistances at different intervals over the lifetime of the test. Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used postmortem to determine if any damages occurred to the cells and to determine if any change in composition occurred to the lanthanum strontium cobalt ferrite cathode. This study shows that the tested cells remain stable with a relatively small increase in the cell total polarization but with no increase in ohmic resistance.

References

References
1.
Steele
,
B. C. H.
, and
Heinzel
,
A.
,
2001
, “
Materials for Fuel-Cell Technologies
,”
Nature
,
414
, pp.
345
352
.10.1038/35104620
2.
Dokiya
,
M.
,
2002
, “
SOFC System and Technology
,”
Solid State Ionics
,
152–153
, pp.
383
392
.10.1016/S0167-2738(02)00345-4
3.
Singhal
,
S. C.
,
2002
, “
Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications
,”
Solid State Ionics
,
152–153
, pp.
405
410
.10.1016/S0167-2738(02)00349-1
4.
Yamomoto
,
O.
,
2000
, “
Solid Oxide Fuel Cells: Fundamental Aspects and Prospects
,”
Electrochimica Acta
,
45
, pp.
2423
2435
.10.1016/S0013-4686(00)00330-3
5.
Minh
,
N. Q.
, and
Takahashi
,
T.
,
1995
,
Science and Technology of Ceramic Fuel Cells
,
Elsevier
,
New York
, Chap. 5.
6.
William
,
M. C.
,
Strakey
,
J. P.
,
Surdoval
,
W. A.
, and
Wilson
,
L. C.
,
2006
, “
Solid Oxide Fuel Cell Technology Development in the U. S
,”
Solid State Ionics
,
177
, pp.
2039
2044
.10.1016/j.ssi.2006.02.051
7.
Yokokawa
,
H.
,
Tu
,
H.
,
Iwanschitz
,
B.
, and
Mai
,
A.
,
2008
, “
Fundamental Mechanisms Limiting Solid Oxide Fuel Cell Durability
,”
J. Power Sources
,
182
, pp.
400
412
.10.1016/j.jpowsour.2008.02.016
8.
McIntosh
,
S.
,
Adler
,
S. B.
,
Vohs
,
J. M.
, and
Gorte
,
R. J.
,
2004
, “
Effect of Polarization on and Implications for Characterization of LSM-YSZ Composite Cathodes
,”
Electrochem. Solid-State Lett.
,
7
,
A111
A114
.10.1149/1.1667792
9.
McEvoy
,
A.
,
2003
,
Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vol. 2: Electrocatalysis
,
W.
Vielstish
,
H. A.
Gasteiger
,
A.
Lamm
, eds.,
John Wiley & Sons
, Chichester, UK, Chap. 27.
10.
DiGiuseppe
,
G.
, and
Sun
,
L.
,
2010
, “
Electrochemical Characterization and Mechanisms of Solid Oxide Fuel Cells by Electrochemical Impedance Spectroscopy Under Different Applied Voltages
,”
8th International Fuel Cell Science, Engineering and Technology Conference (FuelCell2010)
,
Brooklyn, NY
, June 14–16, ASME Paper No.
FuelCell2010-33249
.10.1115/FuelCell2010-33249
11.
DiGiuseppe
,
G.
, and
Sun
,
L.
,
2011
, “
Electrochemical Performance of a Solid Oxide Fuel Cell With an LSCF Cathode Under Different Oxygen Concentrations
,”
Int. J. Hydrogen Energy
,
36
, pp.
5076
5087
.10.1016/j.ijhydene.2011.01.017
You do not currently have access to this content.