The contributions of the individual process steps of the cathode resistance were determined experimentally, directly from impedance spectra obtained from symmetrical cells. The symmetrical cells have architecture/structure consisting of YSZ electrolyte and a double layer cathode LSM-LSM/YSZ. The investigations were carried out in the temperature interval from 650 to 900 °C. The cathode processes steps activation energies obtained were 1.16 eV, 1.1 eV, and 0.09 eV (diffusion), respectively, which is in relatively good agreement with literature values. To understand the role of layer cathode thickness on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells were deconvoluted to obtain the key electrochemical components of electrode performance, namely ohmic resistance (RΩ), two low frequency processes related with chemical adsorption and dissociative reaction of O2 (Rp1 and Rp2), and bulk gas diffusion (W, finite warburg) through the electrode pores. The model used has Voight structure with three times constant. These parameters were then related to features, such as contact layer thickness, function layer thickness, and temperature. It was found that polarization resistance is highly dependent on the thickness of the contact layer (Rp1 and Rp2). All deconvoluted parameters are validated by using the appropriate physicochemical model.

References

References
1.
Larsen
,
P. H.
,
Hendriksen
,
P. V.
,
Koch
,
S.
,
Liu
,
Y. L.
, and
Mogensen
,
M.
,
2003
, “
Breakdown of Losses in Thin Electrolyte SOFCs
,”
Proceedings of the International Symposium on Solid Oxide Fuel Cells VIII
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
The Electrochemical Society, Inc.
,
Paris, France
, pp.
1147
1156
.
2.
Mitterdorfer
,
A.
, and
Gauckler
,
L. J.
,
1998
, “
La2Zr2O7 Formation and Oxygen Reduction Kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ System
,”
Solid State Ionics
,
111
(3–4), pp.
185
218
.10.1016/S0167-2738(98)00195-7
3.
Mitterdorfer
,
A.
, and
Gauckler
,
L. J.
,
1999
, “
Identification of the Reaction Mechanism of the Pt, O2(g)|Yttria-Stabilized Zirconia System: Part II: Model Implementation, Parameter Estimation, and Validation
,”
Solid State Ionics
,
117
(3–4), pp.
203
217
.10.1016/S0167-2738(98)00340-3
4.
Huanga
,
Q.
,
Huia
,
R.
,
Wangb
,
B.
, and
Zhanga
,
J.
,
2007
, “
A Review of AC Impedance Modeling and Validation in SOFC Diagnosis
,”
Electrochim. Acta
,
52
, pp.
8144
8164
.10.1016/j.electacta.2007.05.071
5.
Steele
,
B. C. H.
,
1996
, “
Survey of Materials Selection for Ceramic Fuel Cells II. Cathodes and Anodes
,”
Solid State Ionics
,
86–88
, pp.
1223
1234
.10.1016/0167-2738(96)00291-3
6.
Mizusaki
,
J.
,
Saito
,
T.
, and
Tagawa
,
H.
,
1996
, “
A Chemical Diffusion—Controlled Electrode Reaction at the Compact La1−xSrxMnO3/Stabilized Zirconia Interface in Oxygen Atmospheres
,”
J. Electrochem. Soc.
,
143
(10), pp.
3065
3073
.10.1149/1.1837165
7.
Hammouche
,
A.
,
Siebert
,
E.
,
Hammou
,
A.
,
Kleitz
,
M.
, and
Caneiro
,
A.
,
1991
, “
Electrocatalytic Properties and Nonstoichiometry of the High Temperature Air Electrode La1−xSrxMnO3
,”
J. Electrochem. Soc.
,
138
(5), pp.
1212
1216
.10.1149/1.2085761
8.
Endo
,
A.
,
Ihara
,
M.
,
Komiyama
,
H.
, and
Yamada
,
K.
,
1996
, “
Cathodic Reaction Mechanism for Dense Sr-Doped Lanthanum Manganite Electrodes
,”
Solid State Ionics
,
86–88
, pp.
1191
1195
.10.1016/0167-2738(96)00286-X
9.
Lauret
,
H.
, and
Hammou
,
A.
,
1996
, “
Localization of Oxygen Cathodic Reduction Zone at Lanthanum Manganite/Zirconia Interface
,”
J. Eur. Ceram. Soc.
,
16
(4), pp.
447
451
.10.1016/0955-2219(95)00119-0
10.
Jørgensen
,
M. J.
,
Holtappels
,
P.
, and
Appel
,
C. C.
,
2000
, “
Durability Test of SOFC Cathodes
,”
J. Appl. Electrochem.
,
30
(
4
), pp.
411
418
.10.1023/A:1003987318963
11.
Kleitz
,
M.
, and
Petitbon
,
F.
,
1996
, “
Optimized SOFC Electrode Microstructure
,”
Solid State Ionics
,
92
(1–2), pp.
65
74
.10.1016/S0167-2738(96)00464-X
12.
Brichzin
,
V.
,
Fleig
,
J.
,
Habermeier
,
H. U.
, and
Maier
,
J.
,
2000
, “
Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr-Doped LaMnO3 Microelectrodes
,”
Electrochem. Solid State. Lett.
,
3
(
9
), pp.
403
406
.10.1149/1.1391160
13.
Brichzin
,
V.
,
Fleig
,
J.
,
Habermeier
,
H. U.
,
Cristiani
,
G.
, and
Maier
,
J.
,
2002
, “
The Geometry Dependence of the Polarization Resistance of Sr-Doped LaMnO3 Microelectrodes on Yttria-Stabilized Zirconia
,”
Solid State Ionics
,
152–153
, pp.
499
507
.10.1016/S0167-2738(02)00379-X
14.
Adler
,
S. B.
,
2004
, “
Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes
,”
Chem. Rev.
,
104
(10), pp.
4791
4843
.10.1021/cr020724o
15.
Takeda
,
Y.
,
Kanno
,
R.
,
Noda
,
M.
,
Tomido
,
Y.
, and
Yamamoto
,
O.
,
1987
, “
Cathodic Polarization Phenomena of Perovskite Oxide Electrodes With Stabilized Zirconia
,”
J. Electrochem. Soc.
,
134
(
11
), pp.
2656
2661
.10.1149/1.2100267
16.
Santos
,
J.
,
Matencioa
,
T.
,
Dominguesa
,
R.
, and
M.
Kleitz
,
2012
, “
Evaluation of the Electrode/Electrolyte Contact Quality in Solid Oxide Fuel Cells
,”
Electrochim. Acta
,
60
, pp.
224
229
.10.1016/j.electacta.2011.11.060
17.
Kim
,
J. D.
,
Kim
,
G. D.
,
Moon
,
J. W.
,
Park
,
Y.
,
Lee
,
W. H.
,
Kobayashi
,
K.
,
Nagai
,
M.
, and
Kim
,
C. E.
,
2001
, “
Characterization of LSM–YSZ Composite Electrode by AC Impedance Spectroscopy
,”
Solid State Ionics
,
143
(
3–4
), pp.
379
389
.10.1016/S0167-2738(01)00877-3
18.
Murray
,
E. P.
,
Tsai
,
T.
, and
Barnett
,
S. A.
,
1998
, “
Oxygen Transfer Processes in (La,Sr)MnO3/Y2O3-Stabilized ZrO2 Cathodes: An Impedance Spectroscopy Study
,”
Solid State Ionics
,
110
(
3–4
), pp.
235
243
.10.1016/S0167-2738(98)00142-8
19.
Endo
,
A.
,
Fukunaga
,
H.
,
Wen
,
C.
, and
Yamada
,
K.
,
2000
, “
Cathodic Reaction Mechanism of Dense La0.6Sr0.4CoO3 and La0.81Sr0.09MnO3 Electrodes for Solid Oxide Fuel Cells
,”
Solid State Ionics
,
135
(
1–4
), pp.
353
358
.10.1016/S0167-2738(00)00466-5
20.
Heuveln
,
F. H.
, and
Bouwmeester
,
H. J. M.
,
1997
, “
Electrode Properties of Sr-Doped LaMnO3 on Yttria-Stabilized Zirconia: II. Electrode Kinetics
,”
J. Electrochem. Soc.
,
144
(1), pp.
134
140
.10.1149/1.1837375
21.
Ostergard
,
M. J. L.
, and
Mogensen
,
M.
,
1993
, “
AC Impedance Study of the Oxygen Reduction Mechanism on La1−xSrxMnO3 in Solid Oxide Fuel Cells
,”
Electrochim. Acta
,
38
(14), pp.
2015
2020
.10.1016/0013-4686(93)80334-V
22.
Jørgensen
,
M. J.
, and
Mogensen
,
M.
,
2001
, “
Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes
,”
J. Electrochem. Soc.
,
148
(
5
), pp.
A433–A442
.10.1149/1.1360203
23.
Siebert
,
E.
,
Hammouche
,
A.
, and
Kleitz
,
M.
,
1995
, “
Impedance Spectroscopy Analysis of La1−xSritxMnO3-Yttria-Stabilized Zirconia Electrode Kinetics
,”
Electrochim. Acta
,
40
(11), pp.
1741
1753
.10.1016/0013-4686(94)00361-4
24.
Murray
,
E. P.
,
Tsai
,
T.
, and
Barnett
,
S. A.
,
1988
, “
Oxygen Transfer Processes in (La,Sr)MnO3/Y2O3-Stabilized ZrO2 Cathodes: An Impedance Spectroscopy Study
,”
Solid State Ionics
,
110
(3–4), pp.
235
244
.10.1016/S0167-2738(98)00142-8
25.
Jiang
,
S. P.
,
Love
,
J. G.
,
Zhang
,
J. P.
,
Hoang
,
M.
,
Ramprakash
,
Y.
,
Hughes
,
A. E.
, and
Badwal
,
S. P. S.
,
1999
, “
The Electrochemical Performance of LSM/Zirconia–Yttria Interface as a Function of a-Site Non-Stoichiometry and Cathodic Current Treatment
,”
Solid State Ionics
,
121
(1–4), pp.
1
4
.10.1016/S0167-2738(98)00295-1
26.
Smith
,
J. R.
,
Orazem
,
M.
,
Duncan
,
K.
,
Chen
,
A.
, and
Wachsman
,
E. D.
,
2006
, “
Evaluation of Time Constants Governing the Cathodic Reactions in SOFCs
,” Solid State Ionic Devices IV, Los Angeles, CA, October 16–21, 2005,
ECS Transactions
, Vol. 1,
E. D.
Wachsman
,
F. H.
Garzon
,
E.
Traversa
,
R.
Mukundan
, and
V.
Birss
, eds., The Electrochemical Society, Inc., Pennington, NJ, pp.
243
254
.10.1149/1.2215559
27.
Cussler
,
E. L.
,
1984
,
Diffusion-Mass Transfer in Fluid Systems
,
Cambridge University Press
,
Cambridge, MA
28.
Holtappels
,
P.
,
Jørgensen
,
M. J.
,
Primdahl
,
S.
,
Mogensen
,
M. B.
, and
Bagger
,
C.
,
1998
, “
Electrochemical Performance and Structure of Composite (La0.85Sr0.15)0.9MnO3#+-##delta#/YSZ Cathodes
,”
Proceedings of the 3rd European SOFC Forum, Nantes, France, June 2–5, P. Stevens, ed., European Fuel Cell Forum
,
Oberrohrdorf, Switzerland
, pp.
311
320
.
You do not currently have access to this content.