A hybrid system that combines a solid oxide fuel cell (SOFC) with a proton exchange membrane fuel cell (PEMFC) is presented in this paper. The SOFC stack acts as both an electricity producer and the fuel reformer for the PEMFC stack to generate additional power. A thermoeconomic model for the design optimization of a 220 kW SOFC-PEMFC hybrid system is developed in this work. Optimization of two objectives, i.e., the life cycle cost and the net electrical efficiency, are considered individually to find the optimum system configuration and component designs. Then, a multiparameter sensitivity analysis is performed to estimate the relative importance of the decision variables on the objectives. The optimization results indicate that the life cycle cost of the hybrid system is 3800–5,600 $/kW, and the maximum net electrical efficiency can reach around 63%, which is higher than an SOFC-only system, a reformer-PEMFC system, and an SOFC-gas turbine (GT) system with a similar output power. The sensitivity analysis shows that minimizing the size of the SOFC is most crucial to the system cost optimization. The hydrogen utilization factor in the SOFC is found to be sensitive to the net electrical efficiency.

References

References
1.
Zhang
,
X. W.
,
Chan
,
S. H.
,
Li
,
G. J.
,
Ho
,
H. K.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2012
, “
A Review of Integration Strategies for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
, pp.
685
702
.10.1016/j.jpowsour.2009.07.045
2.
Vollmar
,
H. E.
,
Maier
,
C. U.
,
Nolscher
,
C.
,
Merklein
,
T.
, and
Poppinger
,
M.
,
2000
, “
Innovative Concepts for the Coproduction of Electricity and Syngas With Solid Oxide Fuel Cells
,”
J. Power Sources
,
86
, pp.
90
97
.10.1016/S0378-7753(99)00421-8
3.
Dicks
,
A. L.
,
Fellows
,
R. G.
,
Mescal
,
C. M.
, and
Seymour
,
C.
,
2000
, “
A Study of SOFC-PEM Hybrid Systems
,”
J. Power Sources
,
86
, pp.
501
506
.10.1016/S0378-7753(99)00492-9
4.
Yokoo
,
M.
, and
Take
,
T.
,
2004
, “
Simulation Analysis of a System Combining Solid Oxide and Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
137
, pp.
206
215
.10.1016/j.jpowsour.2004.06.007
5.
Yokoo
,
M.
,
Watanabe
,
K.
,
Arakawa
,
M.
, and
Yamazaki
,
Y.
,
2006
, “
The Effect of Fuel Feeding Method on Performance of SOFC-PEFC System
,”
J. Power Sources
,
159
, pp.
836
845
.10.1016/j.jpowsour.2005.11.093
6.
Yokoo
,
M.
,
Watanabe
,
K.
,
Arakawa
,
M.
, and
Yamazaki
,
Y.
,
2006
, “
Numerical Evaluation of a Parallel Fuel Feeding SOFC-PEFC System Using Seal-Less Planar SOFC Stack
,”
J. Power Sources
,
153
, pp.
18
28
.10.1016/j.jpowsour.2005.03.136
7.
Yokoo
,
M.
,
Watanabe
,
K.
,
Arakawa
,
M.
, and
Yamazaki
,
Y.
,
2007
, “
Influence of Current Densities in SOFC-PEFC Combined System
,”
J. Power Sources
,
163
, pp.
892
899
.10.1016/j.jpowsour.2006.09.050
8.
Subramanyan
,
K.
,
Diwekar
,
U. M.
, and
Goyal
,
A.
,
2004
, “
Multi-Objective Optimization for Hybrid Fuel Cells Power System Under Uncertainty
,”
J. Power Sources
,
132
, pp.
99
112
.10.1016/j.jpowsour.2003.12.053
9.
Subramanyan
,
K.
, and
Diwekar
,
U. M.
,
2007
, “
Optimizing Model Complexity With Application to Fuel Cell Based Power Systems
,”
Chem. Eng. Process.
,
46
, pp.
1116
1128
.10.1016/j.cep.2007.02.032
10.
Chein
,
R. Y.
,
Chen
,
Y. C.
,
Lin
,
Y. S.
, and
Chung
,
J. N.
,
2012
, “
Hydrogen Production Using Integrated Methanol-Steam Reforming Reactor With Various Reformer Designs for PEM Fuel Cells
,”
Int. J. Energy Res.
,
36
, pp.
466
476
.10.1002/er.1805
11.
Hubert
,
C. E.
,
Achard
,
P.
, and
Metkemeijer
,
R.
,
2006
, “
Study of a Small Heat and Power PEM Fuel Cell System Generator
,”
J. Power Sources
,
156
, pp.
64
70
.10.1016/j.jpowsour.2005.08.022
12.
Yaws
,
C. L.
,
1999
,
Chemical Properties Handbook
,
McGraw-Hill
,
New York
.
13.
Singhal
,
S. C.
, and
Kendall
,
K
.
,
2003
,
High Temperature Solid Oxide Fuel Cells: Fundamental, Design and Applications
,
Elsevier
,
Waltham, MA
.
14.
Andersson
,
M.
,
Yuan
,
J.
, and
Sunden
,
B.
,
2012
, “
SOFC Modeling Considering Electrochemical Reactions at the Active Three Phase Boundaries
,”
Int. J. Heat Mass Tran.
,
55
, pp.
773
788
.10.1016/j.ijheatmasstransfer.2011.10.032
15.
Benjamin
,
J. S.
, and
Thomas
,
F. E.
,
2012
, “
Dynamic Modeling, Simulation, and MIMO Predictive Control of a Tubular Solid Oxide Fuel Cell
,”
J. Process Contr.
,
22
, pp.
1502
1520
.10.1016/j.jprocont.2012.01.015
16.
Motahar
,
S.
, and
Alemrajabi
,
A. A.
,
2009
, “
Exergy Based Performance Analysis of a Solid Oxide Fuel Cell and Steam Injected Gas Turbine Hybrid Power System
,”
Int. J. Hydrogen Energy
,
34
, pp.
2396
2407
.10.1016/j.ijhydene.2008.12.065
17.
Duan
,
L. Q.
,
Yan
,
Y. P.
,
He
,
B. B.
, and
Xu
,
G.
,
2012
, “
Study on a Novel Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle System With CO2 Capture
,”
Int. J. Energy Res.
,
36
, pp.
139
152
.10.1002/er.1938
18.
Odukoya
,
A.
,
Carretero
,
J. A.
, and
Reddy
,
B. V.
,
2011
, “
Thermodynamic Optimization of Solid Oxide Fuel Cell-Based Combined Cycle Cogeneration Plant
,”
Int. J. Energy Res.
,
35
, pp.
1399
1411
.10.1002/er.1920
19.
Calise
,
F.
,
Accadia
,
M. D.
,
Palombo
,
A.
, and
Vanoli
,
L.
,
2006
, “
Simulation and Exergy Analysis of a Hybrid Solid Oxide Fuel (SOFC)—Gas Turbine System
,”
Energy
,
31
, pp.
3278
3299
.10.1016/j.energy.2006.03.006
20.
Calise
,
F.
,
Accadia
,
M. D.
,
Vanoli
,
L.
, and
von Spakovsky
,
M. R.
,
2006
, “
Single-Level Optimization of a Hybrid SOFC-GT Power Plant
,”
J. Power Sources
,
159
, pp.
1169
1185
.10.1016/j.jpowsour.2005.11.108
21.
Meng
,
N.
,
Michael
,
K. H. L.
, and
Dennis
,
Y. C. L.
,
2007
, “
Parametric Study of Solid Oxide Fuel Cell Performance
,”
Energ. Conv. Manage.
,
48
, pp.
1525
1535
.10.1016/j.enconman.2006.11.016
22.
Cheddie
,
D. F.
,
2010
, “
Integration of a Solid Oxide Fuel Cell Into a 10 MW Gas Turbine Power Plant
,”
Energies
,
3
, pp.
754
769
.10.3390/en3040754
23.
Spiegel
,
C.
,
2008
,
PEM Fuel Cell Modeling and Simulation Using MATLAB.
Elsevier
,
New York
.
24.
Wishart
,
J.
,
Dong
,
Z.
, and
Secanell
,
M.
,
2006
, “
Optimization of a PEM Fuel Cell System Based on Empirical Data and a Generalized Electrochemical Semi-Empirical Model
,”
J. Power Sources
,
161
, pp.
1041
1055
.10.1016/j.jpowsour.2006.05.056
25.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
,
Compact Heat Exchangers
.
Krieger Publishing Company
,
Malibar, FL
.
26.
Georgopoulos
,
N. G.
,
2002
, “
Application of a Decomposition Strategy to the Optimal Synthesis/Design and Operation of a Fuel Cell Based Total Energy System
,” M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
27.
Kim
,
K.
,
2008
, “
Dynamic Proton Exchange Membrane Fuel Cell System Synthesis/Design and Operation/Control Optimization Under Uncertainty
,” Doctoral thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
28.
Rancruel
,
D. F.
,
2005
, “
Dynamic Synthesis/Design and Operation/Control Optimization Approach Applied to a Solid Oxide Fuel Cell Based Auxiliary Power Unit Under Transient Conditions
,”
Doctoral
thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
29.
Arthur D. Little, Inc.
,
2001
, “
Conceptual Design of POX/SOFC 5 kW Net System
,” U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV.
30.
Thijssen
,
J. H.
,
2007
, “
The Impact of Scale-Up and Production Volume on SOFC Manufacturing Cost
,” U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV.
31.
Ippommatsu
,
M.
,
Sasaki
,
H.
, and
Otoshi
O.
,
1995
, “
Evaluation of the Cost Performance of the SOFC Cell in the Market
,”
Int. J. Hydrogen Energy
,
21
, pp.
129
135
.10.1016/0360-3199(95)00037-2
32.
Braun
,
R. J.
,
2010
, “
Techno-Economic Optimal Design of Solid Oxide Fuel Cell Systems for Micro-Combined Heat and Power Applications in the U.S.
ASME J. Fuel Cell Sci. Tech.
, (3), p.
031018
.10.1115/1.3211099
33.
Energy Information Administration
,
2012
, accessed on May 8, 2012, http://www.eia.doe.gov
34.
Feng
,
Z.
, and
Anil
,
V. V.
,
2008
, “
Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters
,”
J. Power Sources
,
141
, pp.
79
95
.10.1016/j.jpowsour.2004.08.057
35.
Ceraolo
,
M.
,
Miulli
,
C.
, and
Pozio
,
A.
,
2003
, “
Modeling Static and Dynamic Behavior of Proton Exchange Membrane Fuel Cells on the Basis of Electro-Chemical Description
,”
J. Power Sources
,
113
, pp.
131
144
.10.1016/S0378-7753(02)00565-7
36.
Srinivas
,
M.
, and
Partnaik
,
L. M.
,
1994
, “
Genetic Algorithms: Survey
,”
Computer
,
27
, pp.
17
26
.10.1109/2.294849
37.
Riensche
,
E.
,
Stimming
,
U.
, and
Unverzagt
,
G.
,
1998
, “
Optimization of a 200 kW SOFC Cogeneration Power Plant Part I: Variation of Process Parameters
,”
J. Power Sources
,
73
, pp.
251
256
.10.1016/S0378-7753(98)00002-0
38.
Leeper
,
J.
,
2001
, “
220kW Solid Oxide Fuel Cell/Micro Turbine Generator Hybrid Proof of Concept Demonstration Report
,” California Energy Commission 67, Sacramento, CA.
39.
Choi
,
J.
,
Harvey
,
J.
, and
Conklin
,
M.
,
1999
, “
Use of Multi Parameter Sensitivity Analysis to Determine Relative Importance of Factors Influencing Natural Attenuation of Mining Contaminants
,” U.S. Geological Survey Water-Resources Investigations Program, Report. No. 99-4018A
You do not currently have access to this content.