Performance of polymer electrolyte membrane fuel cells (PEMFC) at high current densities is limited to transport reactants and products. Furthermore, large amounts of water are generated and may be condensed due to the low temperature of the PEMFC. Development of a two-phase flow model is necessary in order to predict water flooding and its effects on the PEMFC performance. In this paper, a multiphase mixture model (M2) is used, accurately, to model two-phase transport in porous media of a PEMFC. The cathode side, which includes channel, gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL), is considered as the computational domain. A multidomain approach has been used and transport equations are solved in each domain independently with appropriate boundary conditions between GDL and MPL. Distributions of species concentration, temperature, and velocity field are obtained, and the effects of MPL on species distribution and fuel cell performance are investigated. MPL causes a saturation jump and a discontinuity in oxygen concentration at the GDL/MPL interface. The effect of MPL thickness on fuel cell performance is also studied. The results revealed that the MPL can highly increase the maximum power of a PEMFC.

References

References
1.
O’Hayre
,
R. P.
,
Cha
,
S. W.
, and
Prinz
,
F. B.
,
2006
,
Fuel Cell Fundamental
,
John Wiley Sons
, New York.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1991
, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
,
37
, pp. 1151–1163.10.1002/aic.690370805
3.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
, pp. 2477–2491.10.1149/1.2221251
4.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
, pp. 2334–2342.10.1149/1.2085971
5.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1993
, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
, pp. 3513–3526.10.1149/1.2221120
6.
Bernardi
D. M.
,
1990
, “
Water-Balance Calculations for Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
137
, pp. 3344–3350.10.1149/1.2086220
7.
Verbrugge
,
M. W.
, and
Hill
R. F.
,
1990
, “
Transport Phenomena in Perfluorosulfonic Acid Membranes During the Passage of Current
,”
J. Electrochem. Soc.
,
137
, pp. 1131–1138.10.1149/1.2086615
8.
Gurau
, V
.
,
Liu
,
H. T.
, and
Kakac
,
S.
,
1998
, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
,
44
, pp. 2410–2422.10.1002/aic.690441109
9.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
K. S.
,
2000
, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
147
, pp. 4485–4493.10.1149/1.1394090
10.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2001
, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
94
, pp.
40
50
.10.1016/S0378-7753(00)00662-5
11.
You
,
L.
, and
Liu
,
H.
,
2002
, “
A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
,
45
, pp. 2277–2287.10.1016/S0017-9310(01)00322-2
12.
Natarajan
,
D.
, and
Nguyen
,
T. V.
,
2001
, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
,
148
, pp. A1324–A1335.10.1149/1.1415032
13.
Dupont
,
J. B.
, and
Legendre
,
D.
,
2011
, “
Numerical Simulation for Two-Phase Flows in Fuel Cell Minichannels
,”
ASME J. Fuel Cell Sci. Tech.
,
8
, p.
041008
.10.1115/1.3176222
14.
Zhang
,
L.
,
Du
,
W.
,
Bi
,
H. T.
,
Wilkinson
,
D. P.
,
Stumper
,
J.
, and
Wang
,
H.
,
2009
, “
Gas–Liquid Two-Phase Flow Distributions in Parallel Channels for Fuel Cells
,”
J. Power Sources
,
189
, pp.
1023
1031
.10.1016/j.jpowsour.2009.01.010
15.
Wang
,
X. D.
, and
Zhang
,
X. X.
,
2010
, “
Channel Geometry Effect for Proton Exchange Membrane Fuel Cell With Serpentine Flow Field Using a Three-Dimensional Two-Phase Model
,”
ASME J. Fuel Cell Sci. Tech.
,
7
(5), p.
051019
.10.1115/1.4000849
16.
Quan
,
P.
, and
Lai
,
M. C.
Numerical Simulation of Two-Phase Water Behavior in the Cathode of an Interdigitated Proton Exchange Membrane Fuel Cell
,”
ASME J. Fuel Cell Sci. Tech.
,
7
(1), p.
011017
.10.1115/1.3119083
17.
You
,
L.
, and
Liu
,
H.
,
2006
, “
A Two-Phase Flow and Transport Model for PEM Fuel Cells
,”
J. Power Sources
155
, pp.
219
230
.
10.1016/j.jpowsour.2005.04.025
18.
Meng
,
H.
,
2010
, “
Numerical Studies of Liquid Water Behaviors in PEM Fuel Cell Cathode Considering Transport Across Different Porous Layers
,”
Int. J. Hydrogen Energy
,
35
, pp.
5569
5579
.10.1016/j.ijhydene.2010.03.073
19.
Nam
,
J. H.
, and
Kaviany
,
M.
,
2003
, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4595
4611
.10.1016/S0017-9310(03)00305-3
20.
Pasaogullari
,
U.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2005
Two-Phase Transport in Polymer Electrolyte Fuel Cells With Bilayer Cathode Gas Diffusion Media
,”
J. Electrochem. Soc.
,
152
(
8
), pp.
A1574
A1582
.10.1149/1.1938067
21.
Ramasamy
,
R. P.
,
Kumbur
,
E. C.
,
Mench
,
M. M.
,
Liu
,
W.
,
Moore
,
D.
, and
Murthy
,
M.
,
2008
, “
Investigation of Macro- and Micro-Porous Layer Interaction in Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
33
, pp.
3351
3367
.10.1016/j.ijhydene.2008.03.053
22.
Kang
,
K.
, and
Ju
,
H.
,
2009
, “
Numerical Modeling and Analysis of Micro-Porous Layer Effects in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
194
, pp.
763
773
.10.1016/j.jpowsour.2009.05.046
23.
Kim
,
T.
,
Lee
,
S.
, and
Park
,
H.
,
2010
, “
A Study of Water Transport as a Function of the Micro-Porous Layer Arrangement in PEMFCs
,”
Int. J. Hydrogen Energy
,
35
, pp.
8631
8643
.10.1016/j.ijhydene.2010.05.123
24.
Santoro
,
C.
,
Agrios
,
A.
,
Pasaogullari
,
U.
, and
Li
,
B.
,
2011
, “
Effects of Gas Diffusion Layer (GDL) and Micro Porous Layer (MPL) on Cathode Performance in Microbial Fuel Cells (MFCs)
,”
Int. J. Hydrogen Energy
,
36
, pp.
13096
13104
.10.1016/j.ijhydene.2011.07.030
25.
Chun
,
J. H.
,
Park
,
K. T.
,
Jo
,
D. H.
,
Lee
,
J. Y.
,
Kim
,
S. G.
,
Park
,
S. H.
,
Lee
,
E. S.
,
Jyoung
,
J. Y.
, and
Kim
,
S. H.
,
2011
, “
Development of a Novel Hydrophobic/Hydrophilic Double Micro Porous Layer for Use in a Cathode Gas Diffusion Layer in PEMFs
,”
Int. J. Hydrogen Energy
,
36
, pp.
8422
8428
.10.1016/j.ijhydene.2011.04.038
26.
Wu
,
R.
,
Zhu
,
X.
,
Liao
,
Q.
,
Wang
,
H.
,
Ding
,
Y.
,
Li
,
J.
, and
Ye
,
D.
,
2010
, “
A Pore Network Study on the Role of Micro-Porous Layer in Control of Liquid Water Distribution in Gas Diffusion Layer
,”
Int. J. Hydrogen Energy
,
35
, pp.
7588
7593
.10.1016/j.ijhydene.2010.04.126
27.
You
,
L.
,
2001
, “
The Two-Phase Flow, Transport Mechanism and Performance Studies for PEM Fuel Cells
,” Ph.D. dissertation, University of Miami, Miami, FL.
28.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1996
, “
A Multiphase Mixture Model for Multiphase, Multi-Component Transport in Capillary Porous Media—I: Model Development
,”
Int. J. Heat Mass Transfer
,
39
, pp. 3607–3618.10.1016/0017-9310(96)00036-1
29.
Wang
,
C. Y.
, and
Beckermann
,
C.
,
1993
, “
A Two-Phase Mixture Model of Liquid-Gas Flow and Heat Transfer in Capillary Porous Media, Part I: Formulation
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2747
2758
.10.1016/0017-9310(93)90094-M
30.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1997
, “
Multiphase Flow and Heat Transfer in Porous Media
,”
Adv. Heat Transf.
,
30
, pp. 93–182, 182a, 183–196.10.1016/S0065-2717(08)70251-X
31.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
, pp. 195–203.10.1016/0017-9310(81)90027-2
32.
Ahmad
,
T.
,
2006
,
Reservoir Engineering Handbook
,
Gulf Professional Publishing
, Houston, TX.
33.
Wang
,
Y.
,
Basu
,
S.
, and
Wang
,
C. Y.
,
2008
, “
Modeling Two-Phase Flow in PEM Fuel Cell Channels
,”
J. Power Sources
,
179
, pp.
603
617
.10.1016/j.jpowsour.2008.01.047
34.
Udell
,
K. S.
,
1985
, “
Heat Transfer in Porous Media Considering Phase Change and Capillarity—The Heat Pipe Effect
,”
Int. J. Heat Mass Transfer
,
28
, pp. 485–495.10.1016/0017-9310(85)90082-1
35.
Khajeh-Hosseini
,
N.
,
Kermani
,
M. J.
,
Ghadiri Moghaddam
,
D.
, and
Stockie
,
J. M.
,
2010
, “
A Parametric Study of Cathode Catalyst Layer Structural Parameters on the Performance of a PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
, pp,
2417
2427
.10.1016/j.ijhydene.2009.12.111
36.
Pasaogullari
,
U.
,
2005
, “
Two-Phase Transport and Prediction of Flooding in Polymer Electrolyte Fuel Cells
,” Ph.D. dissertation, The Pennsylvania State University, University Park, PA.
37.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics, the Finite Volume Method
,
Longman Scientific & Technical
, New York.
38.
Roshandel
,
R.
,
Arbabi
,
F.
, and
Karimi Moghaddam
,
G.
,
2012
, “
Simulation of an Innovative Flow-Field Design Based on a Bio Inspired Pattern for PEM Fuel Cells
,”
Renewable Energy
,
41
, pp.
86
95
.10.1016/j.renene.2011.10.008
You do not currently have access to this content.