Catalytic combustors are used as off-gas combustors of molten carbonate fuel cells (MCFCs) because of their exhaust gas purity, geometric flexibility, and high combustion efficiency. In this study, a new design was investigated for possible application in internally reformed MCFC. The study started with performance analysis of a 5 kWe combustor, which could be precisely conducted due to availability of experimental apparatus. A 5 kWe combustor was used as a model combustor, and it was experimentally analyzed in terms of flow uniformity, catalyst screening, and reaction characteristics. The results show that the flow uniformity is able to reduce the exhaust gas concentration because temperature uniformity decreases the possibility of fuel slippages in locally lower temperature zones. As the capacity of the combustor is increased from 5 kWe to 25 kWe, the exhaust gas temperature at the same inlet condition as that of the 5 kWe combustor increases due to lower heat loss. As a result, the catalyst screening process shows different results due to higher operating temperatures, but three of four catalysts provide proper quality. On the other hand, flow uniformity improves economic competitiveness of the catalytic combustor. When the volume loading of catalytic monoliths was decreased, the performance was very similar to that of the original volume loading of catalytic monoliths.

References

References
1.
Lee
,
C. G.
,
Ahn
,
K. Y.
,
Park
,
S. Y.
,
Seo
,
H. K.
, and
Lim
,
H. C.
,
2004
, “
Temperature Characteristics of the Molten Carbonate Fuel Cell Stack
,”
Trans. Korean Hydrogen New Energy Soc.
,
15
, pp.
54
61
.
2.
Lee
,
Y. D.
,
Lee
,
S. M.
,
Ahn
,
K. Y.
, and
Lim
,
H. C.
,
2006
, “
250kW Class MCFC–Gas Turbine Hybrid System
,”
Trans. Korean Fluid Mach. Assoc.
,
9
, pp.
72
75
.
3.
Ghezel
,
A. H.
,
Walzak
,
J.
,
Patel
,
D.
,
Daly
,
J.
,
Maru
,
H.
,
Sanderson
,
R.
, and
Livingood
,
W.
,
2006
, “
State of Direct Fuel Cell/Turbine Systems Development
,”
J. Power Sources
,
152
, pp.
219
225
.10.1016/j.jpowsour.2004.12.060
4.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
New York
, pp.
197
207
.
5.
Lee
,
C.
, and
Lee
,
H. G.
,
1995
, “
NOx Reduction in the Staged Combustor of Gas Turbine
,”
J. Korean Soc. Aeronaut. Space Sci.
,
23
, pp.
129
135
.
6.
Cocchi
,
S.
,
Nutini
,
G.
,
Spencer
,
M. J.
, and
Nickolas
,
S. G.
,
2006
, “
Catalytic Combustion System for a 10 MW Class Power Generation Gas Turbine
,”
Catal. Today
,
117
, pp.
419
426
.10.1016/j.cattod.2006.06.042
7.
Hayes
,
R. E.
, and
Kolacczkowski
,
S. T.
,
1997
,
Introduction to Catalytic Combustion
,
Gordon and Breach Science Publishers
,
Amsterdam
, p.
1
99
.
8.
Betta
,
R. A. D.
, and
Nielsen
,
R. T.
,
1999
, “
Application of Catalytic Combustion to a 1.5 MW Industrial Gas Turbine
,”
Catal. Today
,
47
, pp.
369
375
.10.1016/S0920-5861(98)00319-8
9.
Carroni
,
R.
,
Schmidt
, V
.
, and
Griffin
,
T.
,
2002
, “
Catalytic Combustion for Power Generation
,”
Catal. Today
,
75
, pp.
287
295
.10.1016/S0920-5861(02)00081-0
10.
Betta
,
R. A. D.
,
Schlatter
,
J. C.
,
Yee
,
D. K.
,
Loffler
,
D. G.
, and
Shoji
,
T.
,
1995
, “
Catalytic Combustion Technology to Achieve Ultra Low NOx, Emissions: Catalyst Design and Performance Characteristics
,”
Catal. Today
,
26
, pp.
329
335
.10.1016/0920-5861(95)00155-6
11.
Khinast
,
J. G.
,
Bauer
,
A.
,
Bolz
,
D.
, and
Panarello
,
A.
,
2003
, “
Mass-Transfer Enhancement by Static Mixers in a Wall-Coated Catalytic Reactor
,”
Chem. Eng. Sci.
,
58
, pp.
1063
1070
.10.1016/S0009-2509(02)00648-6
12.
Berg
,
M.
,
Johansson
,
E. M.
, and
Järås
,
S. G.
,
2000
, “
Catalytic Combustion of Low Heating Value Gas Mixtures: Comparison Between Laboratory and Pilot Scale Tests
,”
Catal. Today
,
59
, pp.
117
130
.10.1016/S0920-5861(00)00277-7
13.
Liu
,
H.
,
Li
,
P.
, and
Lew
,
J. V.
,
2010
, “
CFD Study on Flow Distribution Uniformity in Fuel Distributors Having Multiple Structural Bifurcations of Flow Channels
,”
Int. J. Hydrogen Energy
,
35
, pp.
9186
9198
.10.1016/j.ijhydene.2010.06.043
14.
Geus
,
J. W.
, and
Giezen
,
J. C. V.
,
1999
, “
Monoliths in Catalytic Oxidation
,”
Catal. Today
,
47
, pp.
169
180
.10.1016/S0920-5861(98)00297-1
15.
Lee
,
S. M.
,
Lee
,
Y. D.
,
Ahn
,
K. Y.
,
Hong
,
D. J.
, and
Kim
,
M. Y.
,
2007
, “
A Study on the Design of MCFC Off-Gas Catalytic Combustor
,”
Trans. Korean Hydrogen New Energy Soc.
,
18
, pp.
406
412
.
16.
Yu
,
S. S.
,
Hong
,
D. J.
,
Lee
,
Y. D.
,
Lee
,
S. M.
, and
Ahn
,
K. Y.
,
2010
, “
Development of a Catalytic Combustor for a Stationary Fuel Cell Power Generation System
,”
Renewable Energy
,
35
, pp.
1083
1090
.10.1016/j.renene.2009.10.015
17.
Munnannur
,
A.
,
Cremeens
,
C. M.
, and
Liu
,
Z. G.
,
2011
, “
Development of Flow Uniformity Indices for Performance Evaluation of Aftertreatment Systems
,”
SAE Int. J Engines
,
4
(1), pp.
1545
1555
. 10.4271/2011-01-1239
You do not currently have access to this content.