A three-dimensional and steady-state model was developed to explore the effects of fuel gas humidification on cell performance for conventional and interdigitated flow fields in proton exchange membrane fuel cells (PEMFCs). Effects on the current density, temperature difference, and water content have been simulated and analyzed, respectively, with conventional and interdigitated flow field when the humidification in the anode or cathode is from 25% to 100%, respectively. The numerical results show that, when RHa (the anode-side relative humidity) is 100%, the current density decreases as RHc (the cathode-side relative humidity) increases with conventional flow field, but for PEMFC with interdigitated flow field, the current density increases first and then decreases as RHc increases. When RHc ranges from 50% to 75%, temperature difference on the membrane has little change. Membrane water content for PEMFC with interdigitated flow field is higher, with the maximum water content 16.67 at cell voltage of 0.4 V.

References

References
1.
Park
,
J.
, and
Li
,
X. G.
,
2007
, “
Effect of Flow and Temperature Distribution on the Performance of a PEM Fuel Cell Stack
,”
J. Power Sources
,
162
, pp.
444
459
.10.1016/j.jpowsour.2006.07.030
2.
Ferng
,
Y. M.
, and
Su
,
A.
,
2007
, “
A Three-Dimensional Full-Cell CFD Model Used to Investigate the Effects of Different Flow Channel Designs on PEMFC Performance
,”
J. Hydrogen Energy
,
32
(
17
), pp.
4466
4476
.10.1016/j.ijhydene.2007.05.012
3.
Lee
,
C. I.
, and
Chu
,
H. S.
,
2006
, “
Effects of Cathode Humidification on the Gas-Liquid Interface Location in a PEM Fuel Cell
,”
J. Power Sources
,
161
(
2
), pp.
949
956
.10.1016/j.jpowsour.2006.05.012
4.
Jiao
,
K.
, and
Li
,
X. G.
,
2011
, “
Water Transport in Polymer Electrolyte Membrane Fuel Cells
,”
J. Progress Energy Combust. Sci.
,
37
, pp.
221
291
.10.1016/j.pecs.2010.06.002
5.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2004
, “
Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Apply Electrochem.
,
30
(
2
), pp.
135
139
.10.1023/A:1003964201327
6.
Hu
,
G. L.
,
Fan
,
J. R.
,
Chen
,
S.
,
Liu
,
Y. J.
, and
Cen
,
K.
,
2004
, “
Three-Dimensional Numerical Analysis of Proton Exchange Membrane Fuel Cells (PEMFCs) With Conventional and Interdigitated Flow Field
,”
J. Power Sources
,
136
(
1
), pp.
1
9
.10.1016/j.jpowsour.2004.05.010
7.
Guvelioglu
,
G. H.
, and
Stenger
,
H. G.
,
2007
, “
Flow Rate and Humidification Effects on a PEM Fuel Cell Performance and Operation
,”
J. Power Sources
,
163
(
2
), pp.
882
891
.10.1016/j.jpowsour.2006.09.052
8.
Wang
,
X. D.
,
Duan
,
Y. Y.
,
Yan
,
W. M.
, and
Weng
,
F. B.
,
2008
, “
Effect of Humidity of Reactants on the Cell Performance of PEM Fuel Cells With Parallel and Interdigitated Flow Field Designs
,”
J. Power Sources
,
176
(
1
), pp.
247
258
.10.1016/j.jpowsour.2007.10.065
9.
Jeon
,
D. H.
,
Kim
,
K. N.
,
Baek
,
S. M.
, and
Nam
,
J. H.
,
2011
,“
The Effect of Relative Humidity of the Cathode on the Performance and the Uniformity of PEM Fuel Cells
,”
J. Hydrogen Energy
,
36
(
19
), pp.
12499
12511
.10.1016/j.ijhydene.2011.06.136
10.
Shimpalee
,
S.
, and
Dutta
,
S.
,
2000
, “
Numerical Prediction of Temperature Distribution in PEM Fuel Cells
,”
J. Numer. Heat Transfer, Part A
,
38
(
2
), pp.
111
128
.10.1080/10407780050135360
11.
Shimpalee
,
S.
,
Greenway
,
S.
,
Spuckler
,
D.
, and
Van Zee
,
J. W.
,
2004
, “
Predicting Water and Current Distributions in a Commercial-Size PEMFC
,”
J. Power Sources
,
135
(
1
), pp.
1
9
.10.1016/j.jpowsour.2004.03.059
12.
Li
,
P. W.
,
Schaefer
,
L.
,
Wang
,
Q. M.
,
Zhang
,
T.
, and
Chyu
,
M. K.
,
2003
, “
Multi-Gas Transportation and Electrochemical Performance of a Polymer Electrolyte Fuel Cell With Complex Flow Channels
,”
J. Power Sources
,
115
(
1
), pp.
90
100
.10.1016/S0378-7753(02)00723-1
13.
Yan
,
W. M.
,
Chen
,
C. Y.
,
Mei
,
S. Ch
.
,
Soong
,
C. Y.
, and
Chen
,
F. J.
,
2006
, “
Effects of Operating Conditions on Cell Performance of PEM Fuel Cells With Conventional or Interdigitated Flow Field
,”
J. Power Sources
,
162
(
2
), pp.
1157
1164
.10.1016/j.jpowsour.2006.07.044
14.
Hu
,
G. L.
,
Fan
,
J. R.
,
Chen
,
S.
,
Liu
,
Y. J.
, and
Cen
,
K. F.
,
2004
, “
Three-Dimensional Numerical Analysis of Proton Exchange Membrane Fuel Cells (PEMFCs) With Conventional and Interdigitated Flow Fields
,”
J. Power Sources
,
136
(
1
), pp.
1
9
.10.1016/j.jpowsour.2004.05.010
15.
Wang
,
L.
, and
Liu
,
H. T.
,
2004
, “
Performance Studies of PEM Fuel Cells With Interdigitated Flow Fields
,”
J. Power Sources
,
134
(
2
), pp.
185
196
.10.1016/j.jpowsour.2004.03.055
16.
Yoshikawa
,
Y.
,
Matsuura
,
T.
,
Kato
,
M.
, and
Hori
,
M.
,
2006
, “
Design of Low-Humidification PEMFC by Using Cell Simulator and Its Power Generation Verification Test
,”
J. Power Sources
,
158
(
1
), pp.
143
147
.10.1016/j.jpowsour.2005.10.003
17.
Liu
,
F. Q.
,
Lu
,
G. Q.
, and
Wang
,
C. Y.
,
2007
, “
Water Transport Coefficient Distribution Through the Membrane in a Polymer Electrolyte Fuel Cell
,”
J. Membr. Sci.
,
287
(
1
), pp.
126
131
.10.1016/j.memsci.2006.10.030
18.
Paquin
,
M.
, and
Frechette
,
L. G.
,
2008
, “
Understanding Cathode Flooding and Dry-Out for Water Management in Air Breathing PEM Fuel Cells
,”
J. Power Sources
,
180
(
1
), pp.
440
451
.10.1016/j.jpowsour.2008.02.012
19.
Yan
,
W. M.
,
Mei
,
S. Ch.
,
Soong
,
C. Y.
,
Liu
,
Z. S.
, and
Song
,
D.
,
2006
, “
Experimental Study on the Performance of PEM Fuel Cells With Interdigitated Flow Channels
,”
J. Power Sources
,
160
(
1
), pp.
116
122
.10.1016/j.jpowsour.2006.01.063
20.
Afshari
,
E.
, and
Jazayeri
,
S. A.
,
2010
, “
Effects of the Cell Thermal Behavior and Water Phase Change on a Proton Exchange Membrane Fuel Cell Performance
,”
J. Energy Convers. Manage.
,
51
(
4
), pp.
655
662
.10.1016/j.enconman.2009.11.004
21.
Yu
,
L. J.
,
Ren
,
G. P.
,
Qin
,
M. J.
, and
Jiang
,
X. M.
,
2009
, “
Transport Mechanisms and Performance Simulations of a PEM Fuel Cell With Interdigitated Flow Field
,”
J. Renewable Energy
,
34
(
3
), pp.
530
543
.10.1016/j.renene.2008.05.048
You do not currently have access to this content.