An 8 -mol. % Y2O3-doped zirconia/10-mol. % GdO2-doped ceria (YSZ/GDC) bilayer electrolyte and a Gd0.5Sr0.5CoO3 (GSCO) cathode were deposited by a single-processing, pulsed laser deposition (PLD) method to fabricate anode support cells. No additional heat treatment was needed. Laser frequencies of 10, 20, and 100 Hz were used to deposit bilayer electrolytes between the NiO–YSZ (NiO:YSZ = 60:40 wt. %) anode substrate and the GSCO cathode thin film. The GDC thin film produced at 10 Hz was smooth, well-crystallized, and highly dense. The crystallinity of the GSCO cathode on the GDC was also improved. We concluded the GDC crystallinity affected the crystallinity of the cathode thin film. The resistivity of the YSZ single layer (5.7 μm thickness) was 1.4 times higher than that of the YSZ/GDC bilayer (YSZ 3.0 μm thickness, GDC 2.7 μm thickness) at 600 °C and that of the YSZ-GDC interface became low. The optimum YSZ thickness was found to be approximately 3.0 μm, at which thickness there was effective blocking of the passage of hydrogen molecules and electrons. A cell with a YSZ (3.0 μm thickness, fabricated at 20 Hz)/GDC (5.0 μm thickness, fabricated at 10 Hz) bilayer and GSCO cathode thin film exhibited a maximum power density of 400 mW·cm–2 at a comparatively low temperature of 600 °C.

References

References
1.
Bove
,
R.
, and
Ubertini
,
S.
,
2008
,
Modeling Solid Oxide Fuel Cells. Methods, Procedures and Techniques
,
Springer
,
New York
.
2.
Minh
,
N. Q.
,
2004
, “
Solid Oxide Fuel Cell Technology—Features and Applications
,”
Solid State Ionics
,
174
, pp.
271
277
.10.1016/j.ssi.2004.07.042
3.
Oishi
,
N.
,
Atkinson
,
A.
,
Brandon
,
N. P.
,
Kilner
,
J. A.
, and
Steele
,
B. C. H.
,
2005
, “
Fabrication of an Anode-Supported Gadolinium-Doped Ceria Solid Oxide Fuel Cell and Its Operation at 550 °C
,”
J. Am. Ceram. Soc.
,
88
, pp.
1394
1396
.10.1111/j.1551-2916.2005.00251.x
4.
de Souza
,
S.
,
Visco
,
S. J.
, and
de Jonghe
,
L. C.
,
1997
, “
Thin-Film Solid Oxide Fuel Cell With High Performance at Low Temperature
,”
Solid State Ionics
,
98
, pp.
57
61
.10.1016/S0167-2738(96)00525-5
5.
Brahim
,
C.
,
Ringuedé
,
A.
,
Gourba
,
E.
,
Cassir
,
M.
,
Billard
,
A.
, and
Briois
,
P.
,
2006
, “
Electrical Properties of Thin Bilayered YSZ/GDC SOFC Electrolyte Elaborated by Sputtering
,”
J. Power Sources
,
156
, pp.
45
49
.10.1016/j.jpowsour.2005.08.017
6.
Chen
,
K.
,
,
Z.
,
Ai
,
N.
,
Huang
,
X.
,
Zhang
,
Y.
,
Ge
,
X.
,
Xin
,
X.
,
Chen
,
X.
, and
Su
,
W.
,
2007
, “
Fabrication and Performance of Anode-Supported YSZ Films by Slurry Spin Coating
,”
Solid State Ionics
,
177
, pp.
3455
3460
.10.1016/j.ssi.2006.10.003
7.
Wua
,
W.-C.
,
Huanga
,
J.-T.
, and
Chibab
,
A.
,
2010
, “
Synthesis and Properties of Samaria-Doped Ceria Electrolyte for IT-SOFCs by EDTA-Citrate Complexin
,”
J. Power Sources
,
195
, pp.
5868
5874
.10.1016/j.jpowsour.2009.12.098
8.
Peng
,
R.
,
Xia
,
C.
,
Liu
,
X.
,
Peng
,
D.
, and
Meng
,
G.
,
2002
, “
Intermediate-Temperature SOFCs With Thin Ce0.8Y0.2O1.9 Films Prepared by Screen-Printing
,”
Solid State Ionics
,
152
, pp.
561
565
.10.1016/S0167-2738(02)00365-X
9.
Steele
,
B. C. H.
,
2000
, “
Appraisal of Ce1-yGdyO2-y/2 Electrolytes for IT-SOFC Operation at 500 °C
,”
Solid State Ionics
,
129
, pp.
95
110
.10.1016/S0167-2738(99)00319-7
10.
Song
,
J.-H.
,
Park
,
S.-I.
,
Lee
,
J.-H.
, and
Kim
,
H.-S.
,
2008
, “
Fabrication Characteristics of an Anode-Supported Thin-Film Electrolyte Fabricated by the Tape Casting Method for IT-SOFC
,”
J. Mater. Process. Technol.
,
198
, pp.
414
418
.10.1016/j.jmatprotec.2007.07.030
11.
Gaudon
,
M.
,
Laberty-Robert
,
Ch.
,
Ansart
,
F.
, and
Stevens
,
P.
,
2006
, “
Thick YSZ Films Prepared Via a Modified Sol–Gel Route Thickness Control (8-80 μm)
,”
J. Eur. Ceram. Soc.
,
26
, pp.
3153
3160
.10.1016/j.jeurceramsoc.2005.09.026
12.
Tsoga
,
A.
,
Gupta
,
A.
,
Naoumidis
,
A.
, and
Nikolopoulos
,
P.
,
2000
, “
Gadolinia-Doped Ceria and Yttria-Stabilized Zirconia Interfaces Regarding Their Application for SOFC Technology
,”
Acta Mater.
,
48
, pp.
4709
4714
.10.1016/S1359-6454(00)00261-5
13.
Otani
,
M.
,
Tsukui
,
S.
,
Yoshida
,
K.
,
Umezaki
,
Y.
, and
Mukai
,
T.
,
2010
, “
Fabrication of Gd0.5Sr0.5CoO3 Film for SOFC Cathode by Pulsed Laser Deposition
,”
Solid State Ionics
,
180
, pp.
1667
1671
.10.1016/j.ssi.2009.10.010
14.
Takeda
,
Y.
,
Ueno
,
H.
,
Imanishi
,
N.
,
Yamamoto
,
O.
,
Sammes
,
N.
, and
Phillipps
,
M. B.
,
1996
, “
Gd1−xSrxCoO3 for the Electrode of Solid Oxide Fuel Cells
,”
Solid State Ionics
,
86–88
, pp.
1187
l190
.10.1016/0167-2738(96)00285-8
15.
Myung
,
D. H.
,
Hong
,
J.
,
Yoon
,
K.
,
Kim
,
B.-K.
,
Lee
,
H.-W.
,
Lee
,
J.-H.
, and
Son
,
J.-W.
,
2012
, “
The Effect of an Ultra-Thin Zirconia Blocking Layer on the Performance of a 1-μm-Thick Gadolinia-Doped Ceria Electrolyte Solid-Oxide Fuel Cell
,”
J. Power Sources
,
206
, pp.
91
96
.10.1016/j.jpowsour.2012.01.117
16.
Knöner
,
G.
,
Reimann
,
K.
,
Röwer
,
R.
,
Södervall
,
U.
, and
Schaefer
,
H.-E.
,
2003
, “
Enhanced Oxygen Diffusivity in Interfaces of Nanocrystalline ZrO2·Y2O3
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
, pp.
3870
3873
.10.1073/pnas.0730783100
17.
Chan
,
S. H.
,
Low
,
C. F.
, and
Ding
,
O. L.
,
2002
, “
Energy and Exergy Analysis of Simple Solid-Oxide-Fuel-Cell Power Systems
,”
J. Power Sources
,
103
, pp.
188
200
.10.1016/S0378-7753(01)00842-4
18.
Noren
,
D. A.
, and
Hoffman
,
M. A.
,
2005
, “
Clarifying the Butler–Volmer Equation and Related Approximations for Calculating Activation Losses in Solid Oxide Fuel Cell Models
,”
J. Power Sources
,
152
, pp.
175
181
.10.1016/j.jpowsour.2005.03.174
19.
Skinner
,
S. J.
, and
Kilner
,
J. A.
,
2003
, “
Oxygen Ion Conductors
,”
Mater. Today
,
6
, pp.
30
37
.10.1016/S1369-7021(03)00332-8
20.
Cho
,
S.
,
Kim
,
Y.
,
Kim
,
J.-H.
,
Manthiram
,
A.
, and
Wang
,
H.
,
2011
, “
High Power Density Thin Film SOFCs With YSZ/GDC Bilayer Electrolyte
,”
Electrochim. Acta
,
56
, pp.
5472
5477
.10.1016/j.electacta.2011.03.039
You do not currently have access to this content.