A catalytic flat plate fuel reformer offers better heat integration by combining the exothermic catalytic combustion reaction on one side and the endothermic catalytic reforming reaction on the other side. In this study, steam reforming of natural gas (methane) coupled with a methane catalytic combustion in a catalytic flat plate reformer is studied using a two-dimensional model for a cocurrent flow arrangement. The two-dimensional computational fluid dynamics (CFD) model makes the predictions more realistic by increasing its capability to capture the effect of various design parameters and eliminates the uncertainties introduced by heat and mass transfer coefficients used in one-dimensional models. In our work we simulated the entire catalytic flat plate reformer (both reforming side and combustion side) and carried-out studies related to important design parameters such as channel height, inlet fuel velocities, and catalyst layer thickness that can provide guidance for the practical implementation of such fuel reformer design. The simulated transverse temperature profiles (not shown here due to page limitation) show that there is virtually no heat loss across the plate at the reformer exit. Introduction of a water gas shift (WGS) reaction at the reformer side along with our optimized reformer design parameters decreases the amount of carbon monoxide (CO) almost 90%–98% in the final reformate exiting the reformer as compared to without the WGS reaction. The CFD results obtained in this study will be very helpful to understand the optimization of design parameters to build a first generation prototype.

References

References
1.
Blanks
,
R. F.
,
Wittring
T. S.
, and
Peterson
,
D. A.
,
1990
, “
Bidirectional Adiabatic Synthesis Gas Generator
,”
Chem. Eng. Sci.
,
45
, pp.
2407
2413
.10.1016/0009-2509(90)80122-U
2.
De Groote
,
A. M.
,
Froment
G. F.
, and
Kobylinski
,
T. H.
,
1996
, “
Synthesis Gas Production From Natural Gas in a Fixed Bed Reactor With Reversed Flow
,”
Can. J. Chem. Eng.
,
74
, pp.
735
742
.10.1002/cjce.5450740525
3.
Gosiewski
,
K.
,
2001
, “
Simulations of Non-Stationary Reactors for the Catalytic Conversion of Methane to Synthesis Gas
,”
Chem. Eng. Sci.
,
56
, pp.
1501
1510
.10.1016/S0009-2509(00)00376-6
4.
Zanfir
,
M.
, and
Gavriilidis
,
A.
,
2003
, “
Catalytic Combustion Assisted Methane Steam Reforming in a Catalytic Plate Reactor
,”
Chem. Eng. Sci.
,
58
, pp.
3947
3960
.10.1016/S0009-2509(03)00279-3
5.
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
,
1997
,
Introduction to Catalytic Combustion
,
Gordon and Breach
,
Amsterdam
.
6.
Frauhammer
,
J.
,
Eigenberger
,
G.
,
Hippel
,
L. v.
, and
Arntz
,
D.
,
1999
, “
A New Reactor Concept for Endothermic High-Temperature Reactions
,”
Chem. Eng. Sci.
,
54
, pp.
3661
3670
.10.1016/S0009-2509(98)00454-0
7.
Kolios
,
G.
,
Frauhammer
,
J.
, and
Eigenberger
,
G.
,
2001
, “
A Simplified Procedure for the Optimal Design of Autothermal Reactors for Endothermic High-Temperature Reactions
,”
Chem. Eng. Sci.
,
56
, pp.
351
357
.10.1016/S0009-2509(00)00241-4
8.
Kolios
,
G.
,
Frauhammer
,
J.
, and
Eigenberger
,
G.
2002
, “
Efficient Reactor Concepts for Coupling of Endothermic and Exothermic Reactions
,”
Chem. Eng. Sci.
,
57
, pp.
1505
1510
.10.1016/S0009-2509(02)00022-2
9.
Van Hook
,
J. P.
,
1980
, “
Methane–Steam Reforming
,”
Catal. Rev. Sci. Eng.
,
21
, pp.
1
51
.10.1080/03602458008068059
10.
Rostrup-Nielsen
,
J. R.
,
1984
, “
Catalytic Steam Reformer
,”
Catalysis Science and Technology
,
J. R.
Anderson
and
M.
Boudart
, eds.,
Springer
,
Berlin
.
11.
Ridler
,
D. E.
, and
Twigg
,
M. V.
,
1989
, “
Steam Reforming
,”
Catalyst Handbook
,
M. V.
Twigg
, ed.,
Wolfe
,
London
.
12.
Kochloefl
,
K.
1997
, “
Steam Reforming
,”
Handbook of Heterogeneous Catalysis
, Vol.
4
,
G.
Ertl
,
H.
Knozinger
, and
J.
Weitkamp
, eds.,
VCH
,
Weinheim
, Germany.
13.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water-Gas Shift. I. Intrinsic Kinetics
,”
AIChE J.
,
35
, pp.
88
96
.10.1002/aic.690350109
14.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming II. Diffusional Limitations and Reactor Simulation
,”
AIChE J.
,
35
, pp.
97
103
.10.1002/aic.690350110
15.
De Deken
,
J. C.
,
Devos
,
E. F.
, and
Froment
,
G. F.
,
1982
, “
Steam Reforming of Natural Gas. Intrinsic Kinetics, Diffusional Influences and Reactor Design
,”
ACS Symp. Ser.
,
196
, pp.
180
197
.10.1021/bk-1982-0196
16.
Groppi
,
G.
,
Belloli
,
A.
,
Tronconi
,
E.
, and
Forzatti
,
P.
,
1995
, “
A Comparison of Lumped and Distributed Models of Monolith Catalytic Combustors
,”
Chem. Eng. Sci.
,
50
, pp.
2705
2715
.10.1016/0009-2509(95)00099-Q
17.
Welty
,
J.
,
Wicks
,
C. E.
,
Wilson
,
R. E.
, and
Rorrer
,
G. L.
,
2008
,
Fundamentals of Momentum, Heat, and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.