Portable and motive applications of open-cathode polymer electrolyte fuel cells (PEFCs) require not only good stack performance but also a light and compact design. In this context, we explore how edge cooling with three different fin designs—one standard rectangular fin and two triangular fins that essentially halve the size of the fins—can improve the thermal and water envelopes inside the stack as well as stack performance while reducing the overall volume. The results suggest that all three edge-cooling designs give rise to lower and more uniform local temperature distributions as well as higher and more uniform hydration levels at the membrane in the stack compared to the conventional open-cathode PEFC without fins and design with additional air coolant plates. In addition, edge cooling design with one of the triangular fins yields the best performance (around 5% higher in term of power per unit catalyst area and power per unit weight as well as ∼10% higher in term of power per unit volume as compared to other designs). Overall, the triangular fin design shows potential to be used in, for example, automotive applications due to its high performance as well as lightweight and compact design.

References

References
1.
Horizon Fuel Cell Technologies
,
2013
, “
Horizon Fuel Cells
,” http://www.horizonfuelcell.com/fuel_cell_stacks.htm (accessed January 2013).
2.
Sasmito
,
A. P.
,
Birgersson
,
E.
,
Lum
,
K. W.
, and
Mujumdar
,
A. S.
,
2012
, “
Fan Selection and Stack Design for Open-Cathode Polymer Electrolyte Fuel Cell Stacks
,”
Renew. Energy
,
37
, pp.
325
332
.10.1016/j.renene.2011.06.037
3.
Lopez
,
A. M.
,
Barroso
,
J.
,
Roda
,
V.
,
Barranco
,
J.
,
Lozano
,
A.
, and
Barreras
,
F.
,
2012
, “
Design and Development of the Cooling System of a 2 kW Nominal Power Open-Cathode Polymer Electrolyte Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
37
, pp.
7289
7298
.10.1016/j.ijhydene.2011.11.073
4.
Sasmito
,
A. P.
,
Shamim
,
T.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2012
, “
Computational Study of Edge Cooling for Open-Cathode Polymer Electrolyte Fuel Cell Stacks
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
6
), p.
061008
.10.1115/1.4007792
5.
Rosa
,
D. T. S.
,
Pinto
,
D. G.
,
Silva
,
V. S.
,
Silva
,
R. A.
, and
Rangel
,
C. M.
,
2007
, “
High Performance Stack With Open-Cathode at Ambient Pressure and Temperature Conditions
,”
Int. J. Hydrogen Energy
,
32
, pp.
4350
4357
.10.1016/j.ijhydene.2007.05.042
6.
Jung
,
G. B.
,
Lo
,
K. F.
,
Su
,
A.
,
Weng
,
F. B.
,
Tu
,
C. H.
,
Yang
,
T. F.
, and
Chan
,
S. H.
,
2008
, “
Experimental Evaluation of an Ambient Forced-Feed Air-Supply PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
33
, pp.
2980
2985
.10.1016/j.ijhydene.2008.03.056
7.
Wu
,
J.
,
Galli
,
S.
,
Lagana
,
I.
,
Pozio
,
A.
,
Monetelone
,
G.
, and
Yuan
,
X. Z.
,
2009
, “
An Air-Cooled Proton Exchange Membrane Fuel Cell With Combined Oxidant and Coolant Flow
,”
J. Power Sources
,
188
, pp.
199
204
.10.1016/j.jpowsour.2008.11.078
8.
Barreras
,
F.
,
Lopez
,
A. M.
,
Lozano
,
A.
, and
Barranco
,
J. E.
,
2011
, “
Experimental Study of the Pressure Drop in the Cathode Side of Air-Forced Open-Cathode Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
, pp.
7612
7620
.10.1016/j.ijhydene.2011.03.149
9.
Silva
,
R. A.
,
Hashimoto
,
T.
,
Thompson
,
G. E.
, and
Rangel
,
C. M.
,
2012
, “
Characterization of MEA Degradation for an Open Air Cathode PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
, pp.
7299
7308
.10.1016/j.ijhydene.2011.12.110
10.
Strahl
,
S.
,
Husar
,
A.
, and
Serra
,
A.
,
2011
, “
Development and Experimental Validation of a Dynamic Thermal and Water Distribution Model of an Open Cathode Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
196
, pp.
4251
4263
.10.1016/j.jpowsour.2010.10.074
11.
Shahsavari
,
S.
,
Desouza
,
A.
,
Bahrami
,
M.
, and
Kjeang
,
E.
,
2012
, “
Thermal Analysis of Air-Cooled PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
, pp.
18261
18271
.10.1016/j.ijhydene.2012.09.075
12.
Sasmito
,
A. P.
,
Lum
,
K. W.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2010
, “
Computational Study of Forced Air-Convection in Open-Cathode Polymer Electrolyte Fuel Cell Stacks
,”
J. Power Sources
,
195
, pp.
5550
5563
.10.1016/j.jpowsour.2010.02.083
13.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2012
, “
A Novel Flow Reversal Concept for Improved Thermal Management in Polymer Electrolyte Fuel Cell Stacks
,”
Int. J. Therm. Sci.
,
54
, pp.
242
252
.10.1016/j.ijthermalsci.2011.11.020
14.
Barreras
,
F.
,
Lozano
,
A.
,
Barroso
,
J.
,
Roda
,
V.
, and
Maza
,
M.
,
2013
, “
Theoretical Model for the Optimal Design of Air Cooling Systems of Polymer Electrolyte Fuel Cells. Application to a High-Temperature PEMFC
,”
Fuel Cells
,
13
(
2
), pp.
227
237
.10.1002/fuce.201200077
15.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Evaluation of Various Thermal Management Strategies for Polymer Electrolyte Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
36
, pp.
12991
13007
.10.1016/j.ijhydene.2011.07.028
16.
Fluckiger
,
R.
,
Tiefenauer
,
A.
,
Ruge
,
M.
,
Aebi
,
C.
,
Wokaun
,
A.
, and
Buchi
,
F. N.
,
2007
, “
Thermal Analysis and Optimization of a Portable Edge-Air-Cooled PEFC Stack
,”
J. Power Sources
,
172
, pp.
324
333
.10.1016/j.jpowsour.2007.05.079
17.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Investigation of Liquid Water Cooling for a Proton Exchange Membrane Fuel Cell Stack
,”
Heat Transfer Eng.
,
32
, pp.
151
167
.10.1080/01457631003769302
You do not currently have access to this content.