A structural model has been developed for analysis of residual stresses for anode- and electrolyte-supported planar solid oxide fuel cells (SOFC). This model was also used for analysis of thermally induced stresses during operation for three different case studies with the electrolyte-supported geometry. Temperature distribution in the solid parts of the cell was modeled by means of an in-house electrochemical model, and the results were exported to the structural model. In the case studies, the impact of air and fuel inlet temperatures, steam reforming, and operation voltages on thermal stresses were studied. Weibull statistics were used for the prediction of failure probabilities and design considerations. Base case geometry for the electrolyte-supported cell was 50, 150, and 50 μm for anode, electrolyte, and cathode thicknesses, respectively, and for the anode-supported cell 1000, 20, and 50 μm, respectively. Analysis of residual stresses showed that, compared with the anode-supported cell, the electrolyte-supported cell experienced considerably higher stress levels in the anode and cathode due to the thick electrolyte, while the stress levels in the electrolyte were lower. For the anode-supported cell, maximum stress levels were 57, −12, and −678 MPa in the anode, cathode, and electrolyte, respectively, with negative values indicating compressive and positive values, tensile stresses. For the electrolyte-supported geometry, the corresponding levels were 282, 100, and −308 MPa, respectively. With a failure probability of 1E-6 and an electrolyte thickness of 10 μm, the minimum allowable anode thickness was estimated to be 1000 μm. For an electrolyte-supported cell, optimal thicknesses of electrolyte and anode were considered to be 100 and 100 μm, respectively, while the thickness of the cathode showed low impact. During operation, the stress levels were reduced considerably, since high operating temperatures reduce the temperature difference to the sintering temperature (1250 °C). Concerning the presence of methane in the fuel and the effect of steam reforming, small amounts of methane—as low as 10% of molar mass—were found to induce a cooling effect with correspondingly high gradients. With 45% methane in the fuel, the tensile stress level in the anode was about 130 MPa; the impact of thermal gradients was considered to be 40 MPa and the cooling effect also 40 MPa.

References

References
1.
Bujalski
,
W.
,
Dikwal
,
C. M.
, and
Kendall
,
K.
,
2007
, “
Cycling of Three Solid Oxide Fuel Cell Types
,”
J. Power Sources
,
171
(
1
), pp.
96
100
.10.1016/j.jpowsour.2007.01.029
2.
Campana
,
R.
,
Merino
,
R. I.
,
Larrea
,
A.
,
Villarreal
,
I.
, and
Orera
,
V. M.
,
2009
, “
Fabrication, Electrochemical Characterization and Thermal Cycling of Anode Supported Microtubular Solid Oxide Fuel Cells
,”
J. Power Sources
,
192
(
1
), pp.
120
125
.10.1016/j.jpowsour.2008.12.107
3.
Fischer
,
K.
, and
Seume
,
J. R.
,
2009
, “
Impact of the Temperature Profile on Thermal Stress in a Tubular Solid Oxide Fuel Cell
,”
J. Fuel Cell Sci. Technol.
,
6
(
1
), p.
011017
.10.1115/1.2971132
4.
Lang
,
M.
,
Szabo
,
P.
,
Ilhan
,
Z.
,
Cinque
,
S.
,
Franco
,
T.
, and
Schiller
,
G.
,
2007
, “
Development of Solid Oxide Fuel Cells and Short Stacks for Mobile Application
,”
J. Fuel Cell Sci. Technol.
,
4
(
4
), pp.
384
391
.10.1115/1.2756569
5.
Liu
,
L.
,
Kim
,
G.-Y.
, and
Chandra
,
A.
,
2009
, “
Modeling of Thermal Stresses and Lifetime Prediction of Planar Solid Oxide Fuel Cell Under Thermal Cycling Conditions
,”
J. Power Sources
,
195
(
8
), pp.
2310
2318
.10.1016/j.jpowsour.2009.10.064
6.
Pihlatie
,
M.
,
Ramos
,
T.
, and
Kaiser
,
A.
,
2009
, “
Testing and Improving the Redox Stability of Ni-Based Solid Oxide Fuel Cells
,”
J. Power Sources
,
193
(
1
), pp.
322
330
.10.1016/j.jpowsour.2008.11.140
7.
Smeacetto
,
F.
,
Chrysanthou
,
A.
,
Salvo
,
M.
,
Zhang
,
Z.
, and
Ferraris
,
M.
,
2009
, “
Performance and Testing of Glass-Ceramic Sealant Used to Join Anode-Supported-Electrolyte to Crofer22APU in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
190
(
2
), pp.
402
407
.10.1016/j.jpowsour.2009.01.042
8.
Tucker
,
M. C.
,
Lau
,
G. Y.
,
Jacobson
,
C. P.
,
DeJonghe
,
L. C.
, and
Visco
,
S. J.
,
2008
, “
Stability and Robustness of Metal-Supported SOFCs
,”
J. Power Sources
,
175
(
1
), pp.
447
451
.10.1016/j.jpowsour.2007.09.032
9.
Wang
,
Z. W.
,
Berghaus
,
J. O.
,
Yick
,
S.
,
Deces-Petit
,
C.
,
Qu
,
W.
,
Hui
,
R.
,
Maric
,
R.
, and
Ghosh
,
D.
,
2008
, “
Dynamic Evaluation of Low-Temperature Metal-Supported Solid Oxide Fuel Cell Oriented to Auxiliary Power Units
,”
J. Power Sources
,
176
(
1
), pp.
90
95
.10.1016/j.jpowsour.2007.10.002
10.
Chiang
,
L.-K.
,
Liu
,
H.-C.
,
Shiu
,
Y.-H.
,
Lee
,
C.-H.
, and
Lee
,
R.-Y.
,
2008
, “
Thermo-Electrochemical and Thermal Stress Analysis for an Anode-Supported SOFC Cell
,”
Renewable Energy
,
33
(
12
), pp.
2580
2588
.10.1016/j.renene.2008.02.023
11.
Cui
,
D. A.
, and
Cheng
,
M. J.
,
2009
, “
Thermal Stress Modeling of Anode Supported Micro-Tubular Solid Oxide Fuel Cell
,”
J. Power Sources
,
192
(
2
), pp.
400
407
.10.1016/j.jpowsour.2009.03.046
12.
Laurencin
,
J.
,
Morel
,
B.
,
Bultel
,
Y.
, and
Lefebvre-Joud
,
F.
,
2006
, “
Thermo-Mechanical Model of Solid Oxide Fuel Cell Fed With Methanex
,”
Fuel Cells
,
6
(
1
), pp.
64
70
.10.1002/fuce.200500096
13.
Lin
,
C.-K.
,
Chen
,
T.-T.
,
Chyou
,
Y.-P.
, and
Chiang
,
L.-K.
,
2007
, “
Thermal Stress Analysis of a Planar SOFC Stack
,”
J. Power Sources
,
164
(
1
), pp.
238
251
.10.1016/j.jpowsour.2006.10.089
14.
Lin
,
C.-K.
,
Huang
,
L.-H.
,
Chiang
,
L.-K.
, and
Chyou
,
Y.-P.
,
2009
, “
Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design
,”
J. Power Sources
,
192
(
2
), pp.
515
524
.10.1016/j.jpowsour.2009.03.010
15.
Montross
,
C. S.
,
Yokokawa
,
H.
, and
Dokiya
,
M.
,
2002
, “
Thermal Stresses in Planar Solid Oxide Fuel Cells Due to Thermal Expansion Differences
,”
Br. Ceram. Trans.
,
101
, pp.
85
93
.10.1179/096797802225003956
16.
Nakajo
,
A.
,
Stiller
,
C.
,
Härkegård
,
G.
, and
Bolland
,
O.
,
2006
, “
Modeling of Thermal Stresses and Probability of Survival of Tubular SOFC
,”
J. Power Sources
,
158
(
1
), pp.
287
294
.10.1016/j.jpowsour.2005.09.004
17.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van Herle
,
J.
, and
Favrat
,
D.
,
2009
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part II: Loss of Gas-Tightness, Electrical Contact and Thermal Buckling
J. Power Sources
,
193
(
1
), pp.
216
226
.10.1016/j.jpowsour.2008.12.039
18.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van Herle
,
J.
, and
Favrat
,
D.
,
2009
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part I: Probability of Failure of the Cells
,”
J. Power Sources
,
193
(
1
), pp.
203
215
.10.1016/j.jpowsour.2008.12.050
19.
Selimovic
,
A.
,
Kemm
,
M.
,
Torisson
,
T.
, and
Assadi
,
M.
,
2005
, “
Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
145
(
2
), pp.
463
469
.10.1016/j.jpowsour.2004.11.073
20.
Srikar
,
V. T.
,
Turner
,
K. T.
,
Andrew Ie
,
T. Y.
, and
Spearing
,
S. M.
,
2004
, “
Structural Design Considerations for Micromachined Solid-Oxide Fuel Cells
,”
J. Power Sources
,
125
(
1
), pp.
62
69
.10.1016/j.jpowsour.2003.07.002
21.
Sumi
,
H.
,
Ukai
,
K.
,
Yokoyama
,
M.
,
Mizutani
,
Y.
,
Doi
,
Y.
,
Machiya
,
S.
,
Akiniwa
,
Y.
, and
Tanaka
,
K.
,
2006
, “
Changes of Internal Stress in Solid-Oxide Fuel Cell During Red-Ox Cycle Evaluated by in Situ Measurement With Synchrotron Radiation
,”
J. Fuel Cell Sci. Technol.
,
3
(
1
), pp.
68
74
.10.1115/1.2134739
22.
Wang
,
Y.
,
Walter
,
M. E.
,
Sabolsky
,
K.
, and
Seabaugh
,
M. M.
,
2006
, “
Effects of Powder Sizes and Reduction Parameters on the Strength of Ni-YSZ Anodes
,”
Solid State Ionics
,
177
(
17–18
), pp.
1517
1527
.10.1016/j.ssi.2006.07.010
23.
Atkinson
,
A.
, and
Sun
,
B.
,
2007
, “
Residual Stress and Thermal Cycling of Planar Solid Oxide Fuel Cells
,”
Mater. Sci. Technol.
,
23
(
10
), pp.
1135
1143
.10.1179/026708307X232910
24.
Malzbender
,
J.
,
Wakui
,
T.
, and
Steinbrech
,
R. W.
,
2006
, “
Curvature of Planar Solid Oxide Fuel Cells During Sealing and Cooling of Stacks
,”
Fuel Cells
,
6
(
2
), pp.
123
129
.10.1002/fuce.200500109
25.
Tsui
,
Y. C.
, and
Clyne
,
T. W.
,
1997
, “
An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 1: Planar Geometry
,”
Thin Solid Films
,
306
(
1
), pp.
23
33
.10.1016/S0040-6090(97)00199-5
26.
Tsui
,
Y. C.
, and
Clyne
,
T. W.
,
1997
, “
An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings Part 2: Cylindrical Geometry
,”
Thin Solid Films
,
306
(
1
), pp.
34
51
.10.1016/S0040-6090(97)00209-5
27.
Yakabe
,
H.
,
Baba
,
Y.
,
Sakurai
,
T.
, and
Yoshitaka
,
Y.
,
2004
, “
Evaluation of the Residual Stress for Anode-Supported SOFCs
,”
J. Power Sources
,
135
(
1–2
), pp.
9
16
.10.1016/j.jpowsour.2003.11.049
28.
Fischer
,
W.
,
Malzbender
,
J.
,
Blass
,
G.
, and
Steinbrech
,
R. W.
,
2005
, “
Residual Stresses in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
150
, pp.
73
77
.10.1016/j.jpowsour.2005.02.014
29.
Malzbender
,
J.
,
Fischer
,
W.
, and
Steinbrech
,
R. W.
,
2008
, “
Studies of Residual Stresses in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
182
(
2
), pp.
594
598
.10.1016/j.jpowsour.2008.04.035
30.
Zhang
,
T.
,
Zhu
,
Q.
,
Huang
,
W. L.
,
Xie
,
Z.
, and
Xin
,
X.
,
2008
, “
Stress Field and Failure Probability Analysis for the Single Cell of Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
182
(
2
), pp.
540
545
.10.1016/j.jpowsour.2008.04.027
31.
Kato
,
T.
,
Wang
,
N. S.
,
Negishi
,
A.
,
Momma
,
A.
,
Kasuga
,
Y.
, and
Nozaki
,
K.
,
1999
, “
Stress Analysis in YSZ Electrolytes of SOFCs Using Metallic Substrate Tubes
,”
Proceedings of the Third International Fuel Cell Conference
,
Nagoya, Japan
, November 30-December 3, pp.
461
464
.
32.
Tietz
,
F.
,
1999
, “
Thermal Expansion of SOFC Materials
,”
Ionics
,
5
, pp.
129
139
.10.1007/BF02375916
33.
Inui
,
Y.
,
Ito
,
N.
,
Nakajima
,
T.
, and
Urata
,
A.
,
2006
, “
Analytical Investigation on Cell Temperature Control Method of Planar Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
,
47
(
15–16
), pp.
2319
2328
.10.1016/j.enconman.2005.11.007
34.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
(
1–2
), pp.
120
136
.10.1016/j.jpowsour.2004.06.040
35.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
,
2003
,
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
,
113
(
1
), pp.
109
114
.10.1016/S0378-7753(02)00487-1
36.
Dikwal
,
C. M.
,
Bujalski
,
W.
, and
Kendall
,
K.
,
2009
, “
The Effect of Temperature Gradients on Thermal Cycling and Isothermal Ageing of Micro-Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
,
193
(
1
), pp.
241
248
.10.1016/j.jpowsour.2009.01.097
37.
Dikwal
,
C. M.
,
Bujalski
,
W.
, and
Kendall
,
K.
,
2008
, “
Characterization of the Electrochemical Performance of Micro-Tubular SOFC in Partial Reduction and Oxidation Conditions
,”
J. Power Sources
,
181
(
2
), pp.
267
273
.10.1016/j.jpowsour.2007.11.052
38.
Van Herle
,
J.
,
Ihringer
,
R.
,
Sammes
,
N. M.
Tompsett
,
G.
,
Kendall
,
K.
,
Yamada
,
K.
,
Wen
,
C.
,
Kawada
,
T.
,
Ihara
,
M.
, and
Mizusaki
,
J.
,
2000
, “
Concept and Technology of SOFC for Electric Vehicles
,”
Solid State Ionics
,
132
(
3–4
), pp.
333
342
.10.1016/S0167-2738(00)00649-4
39.
Kanamura
,
K.
, and
Takehara
,
Z.
,
1993
, “
Temperature and Thermal Stress Distribution in a Tubular Solid Oxide Fuel Cell
,”
Bull. Chem. Soc. Jpn.
,
60
(
10
), pp.
2797
2803
.10.1246/bcsj.66.2797
40.
Laurencin
,
J.
,
Delette
,
G.
,
Lefebvre-Joud
,
F.
, and
Dupeux
,
M.
,
2008
, “
A Numerical Tool to Estimate SOFC Mechanical Degradation: Case of the Planar Cell Configuration
,”
J. Eur. Ceram. Soc.
,
28
(
9
), pp.
1857
1869
.10.1016/j.jeurceramsoc.2007.12.025
41.
Selçuk
,
A.
,
Merere
,
G.
, and
Atkinson
,
A.
,
2001
, “
The Influence of Electrodes on the Strength of Planar Zirconia Solid Oxide Fuel Cells
,”
J. Mater. Sci.
,
36
(
5
), pp.
1173
1182
.10.1023/A:1004833909780
42.
Cannon
,
W. R.
, and
Langdon
,
T. G.
,
1983
, “
Creep of Ceramics
,”
J. Mater. Sci.
,
18
(
1
), pp.
1
50
.10.1007/BF00543808
43.
Chevalier
,
J.
,
Olagnon
,
C.
,
Fantozzi
,
G.
, and
Gros
,
H.
,
1997
, “
Creep Behaviour of Alumina, Zirconia and Zirconia-Toughened Alumina
,”
J. Eur. Ceram. Soc.
,
17
(
6
), pp.
859
864
.10.1016/S0955-2219(96)00160-4
44.
Faes
,
A.
,
Nakajo
,
A.
,
Hessler-Wyser
,
A.
,
Dubois
,
D.
,
Brisse
,
A.
,
Modena
,
S.
, and
Van Herle
,
J.
,
2009
, “
RedOx Study of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
,
193
(
1
), pp.
55
64
.10.1016/j.jpowsour.2008.12.118
45.
Govindaraju
,
N.
,
Liu
,
W. N.
,
Sun
,
X.
,
Singh
,
P.
, and
Singh
,
R. N.
,
2009
, “
A Modeling Study on the Thermomechanical Behavior of Glass-Ceramic and Self-Healing Glass Seals at Elevated Temperatures
,”
J. Power Sources
,
190
(
2
), pp.
476
484
.10.1016/j.jpowsour.2009.01.006
46.
Stephens
,
E. V.
,
Vetrano
,
J. S.
,
Koeppel
,
B. J.
,
Chou
,
Y.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2009
, “
Experimental Characterization of Glass-Ceramic Seal Properties and Their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models
,”
J. Power Sources
,
193
(
2
), pp.
625
631
.10.1016/j.jpowsour.2009.02.080
47.
Froitzheim
,
J.
,
Meier
,
G. H.
,
Niewolak
,
L.
,
Ennis
,
P. J.
,
Hattendorf
,
H.
,
Singheiser
,
L.
, and
Quadakkers
,
W. J.
,
2008
, “
Development of High Strength Ferritic Steel for Interconnect Application in SOFCs
,”
J. Power Sources
,
178
(
1
), pp.
163
173
.10.1016/j.jpowsour.2007.12.028
48.
Kilo
,
M.
,
Argirusis
,
C.
,
Borchardt
,
G.
,
Ghosh
,
S.
, and
Chokshi
,
A. H.
,
2008
, “
Creep in Scandia Stabilized Zirconia
,”
Solid State Ionics
,
179
(
21–26
), pp.
804
806
.10.1016/j.ssi.2008.01.011
49.
Morales-Rodríguez
,
A.
,
Richter
,
G.
,
Rühle
,
M.
,
Bravo-León
,
A.
,
Domínguez-Rodríguez
,
A.
, and
Jiménez-Melendo
,
M.
,
2007
, “
Microstructural Characteristics of TZP/Ni Cermets Plastically Deformed at High Temperature
,”
J. Eur. Ceram. Soc.
,
27
(
4
), pp.
2053
2059
.10.1016/j.jeurceramsoc.2006.03.005
50.
Powers
,
L. M.
,
Panoskaltsis
,
V. P.
, and
Gasparini
,
D. A.
,
2006
, “
A Non-Linear Viscoelastic Model for Ceramics at High Temperatures
,”
Int. J. Non-Linear Mech.
,
41
(
2
), pp.
200
212
.10.1016/j.ijnonlinmec.2005.07.002
51.
Morales-Rodríguez
,
A.
,
Bravo-León
,
A.
,
Richter
,
G.
,
Rühle
,
M.
,
Domínguez-Rodríguez
,
A.
, and
Jiménez-Melendo
,
M.
,
2006
, “
Influence of Oxidation on the High-Temperature Mechanical Properties of Zirconia/Nickel Cermets
,”
Scri. Mater.
,
54
(
12
), pp.
2087
2090
.10.1016/j.scriptamat.2006.03.005
52.
Wenning
,
L.
, and
Jianmin
,
Q.
,
2005
, “
Creep Deformation of Ni/YSZ Cermet in SOFCs
,”
Proceedings of the 29th International Conference on Advanced Ceramics and Composites
, Cocoa Beach, FL, January 23–28, Vol.
26
, pp.
299
306
.
53.
Iguchi
,
F.
,
Endo
,
Y.
,
Ishida
,
T.
,
Yokobori
,
T.
,
Yugami
,
H.
,
Otake
,
T.
,
Kawada
,
T.
, and
Mizusaki
,
J.
,
2005
, “
Oxygen Partial Pressure Dependence of Creep on Yttria-Doped Ceria Ceramics
,”
Solid State Ionics
,
176
(
5–6
), pp.
641
644
.10.1016/j.ssi.2004.09.005
54.
Cutler
,
R. A.
, and
Meixner
,
D. L.
,
2003
, “
Ceria-Lanthanum Strontium Manganite Composites for Use in Oxygen Generation Systems
,”
Solid State Ionics
,
159
(
1–2
), pp.
9
19
.10.1016/S0167-2738(03)00006-7
55.
Morales-Rodríguez
,
A.
,
Bravo-León
,
A.
,
Domínguez-Rodríguez
,
A.
,
López-Esteban
,
S.
,
Moya
,
J. S.
, and
Jiménez-Melendo
,
M.
,
2003
, “
High-Temperature Mechanical Properties of Zirconia/Nickel Composites
,”
J. Eur. Ceram. Soc.
,
23
(
15
), pp.
2849
2856
.10.1016/S0955-2219(03)00309-1
56.
Gutierrez-Mora
,
F.
,
Ralph
,
J. M.
, and
Routbort
,
J. L.
,
2002
, “
High-Temperature Mechanical Properties of Anode-Supported Bilayers
,”
Solid State Ionics
,
149
(
3–4
), pp.
177
184
.10.1016/S0167-2738(02)00292-8
57.
Meixner
,
D. L.
, and
Cutler
,
R. A.
,
2002
, “
Sintering and Mechanical Characteristics of Lanthanum Strontium Manganite
,”
Solid State Ionics
,
146
(
3–4
), pp.
273
284
.10.1016/S0167-2738(01)01027-X
58.
Meixner
,
D. L.
, and
Cutler
,
R. A.
,
2002
, “
Low-Temperature Plastic Deformation of a Perovskite Ceramic Material
,”
Solid State Ionics
,
146
(
3–4
), pp.
285
300
.10.1016/S0167-2738(01)01028-1
59.
Lowrie
,
F. L.
, and
Rawlings
,
R. D.
,
2000
, “
Room and High Temperature Failure Mechanisms in Solid Oxide Fuel Cell Electrolytes
,”
J. Eur. Ceram. Soc.
,
20
(
6
), pp.
751
760
.10.1016/S0955-2219(99)00080-1
60.
Milhans
,
J.
,
Khaleel
,
M.
,
Sun
,
X.
,
Tehrani
,
M.
,
Al-Haik
,
M.
, and
Garmestani
,
H.
,
2009
, “
Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18
,”
J. Power Sources
,
195
(
11
), pp.
3631
3635
.10.1016/j.jpowsour.2009.12.038
61.
Pihlatie
,
M. H.
,
Frandsen
,
H. L.
,
Kaiser
,
A.
, and
Mogensen
,
M.
,
2009
, “
Continuum Mechanics Simulations of NiO/Ni-YSZ Composites During Reduction and Re-Oxidation
,”
J. Power Sources
,
195
(
9
), pp.
2677
2690
.10.1016/j.jpowsour.2009.11.079
62.
Davidge
,
R. W.
,
McLaren
,
J. R.
, and
Tappin
,
G.
,
1973
, “
Strength-Probability-Time (SPT) Relationships in Ceramics
,”
J. Mater. Sci.
,
8
(
12
), pp.
1699
1705
.10.1007/BF02403519
63.
Chang
,
H.-T.
,
Lin
,
C.-K.
, and
Liu
,
C.-K.
,
2009
, “
High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell
,”
J. Power Sources
,
189
(
2
), pp.
1093
1099
.10.1016/j.jpowsour.2008.12.102
64.
Malzbender
,
J.
, and
Steinbrech
,
R. W.
,
2008
, “
Threshold Fracture Stress of Thin Ceramic Components
,”
J. Eur. Ceram. Soc.
,
28
(
1
), pp.
247
252
.10.1016/j.jeurceramsoc.2007.05.017
65.
Atkinson
,
A.
, and
Selçuk
,
A.
,
2000
, “
Mechanical Behaviour of Ceramic Oxygen Ion-Conducting Membranes
,”
Solid State Ionics
,
134
(
1–2
), pp.
59
66
.10.1016/S0167-2738(00)00714-1
66.
Severson
,
H.
, and
Assadi
,
M.
,
2010
,
Steady State Performance Analysis of a Planar Electrolyte-Supported SOFC Using a Detailed and Validated Simulation Model
,
University of Stavanger
,
Stavanger, Norway
.
67.
Selimovic
,
A.
,
2002
, “
Modelling of Solid Oxide Fuel Cells Applied to the Analysis of Integrated Systems With Gas Turbines
,” Ph.D. thesis, Department of Energy Sciences, Lund University, Lund, Sweden.
68.
Achenbach
,
E.
,
1996
, “
SOFC Stack Modeling, Final Report of Activity A2, Annex II: Modeling and Evaluation of Advanced Solid Oxide Fuel Cells
,” International Energy Agency Programme on RD&D on Advanced Fuel Cells, Juelich, Germany, March.
69.
COMSOL Multiphysics
,
2008
, “
Structural Mechanics Module Version 3.5a
,” http://www.comsol.com/products/3.5/
70.
Yakabe
,
H.
,
Baba
,
Y.
,
Sakurai
,
T.
,
Satoh
,
M.
,
Hirosawa
,
I.
, and
Yoda
,
Y.
,
2004
, “
Evaluation of Residual Stresses in a SOFC Stack
,”
J. Power Sources
,
131
(
1–2
), pp.
278
284
.10.1016/j.jpowsour.2003.12.057
71.
Ho
,
T. X.
,
Kosinski
,
P.
,
Hoffmann
,
A. C.
, and
Vik
,
A.
,
2009
, “
Numerical Analysis of a Planar Anode-Supported SOFC With Composite Electrodes
,”
Int. J. Hydrogen Energy
,
34
(
8
), pp.
3488
3499
.10.1016/j.ijhydene.2009.02.016
72.
Patcharavorachot
,
Y.
,
Arpornwichanop
,
A.
, and
Chuachuensuk
,
A.
,
2008
, “
Electrochemical Study of a Planar Solid Oxide Fuel Cell: Role of Support Structures
,”
J. Power Sources
,
177
(
2
), pp.
254
261
.10.1016/j.jpowsour.2007.11.079
You do not currently have access to this content.