In this paper, a fuel cell (FC) maximum power point tracking (MPPT) with fuel flow optimization is presented. The aim of this study is to extract the maximum power from a FC at different fuel flow rates and to protect the FC from over-current and voltage collapse across terminals. The system is composed of a tracker with a buck converter able to change the output impedance of the FC and therefore its power. In order to illustrate our approach, the tracker is simulated by using both static and dynamic FC models to describe the FC response. Simulation results show the behavior of the tracker at different fuel and oxidant flow rates and verify the concept of maximum power tracking.

References

References
1.
Zhou
,
W.
,
Lou
,
C.
,
Li
,
Z.
,
Lu
,
L.
, and
Yang
,
H.
,
2010
, “
Current Status of Research on Optimum Sizing of Stand-Alone Hybrid Solar–Wind Power Generation Systems
,”
Appl. Energy
,
87
(
2
), pp.
380
389
.10.1016/j.apenergy.2009.08.012
2.
Kashefi Kaviani
,
A.
,
Riahy
,
G. H.
, and
Kouhsarj
,
S. M.
,
2008
, “
Optimal Design of a Reliable Hydrogen-Based Stand-Alone Wind/Pv Generation System
,”
11th International Conference on Optimization of Electrical and Electronic Equipment
(
OPTIM 2008
), Brasov, Romania, May 22–24, pp.
413
418
10.1109/OPTIM.2008.4602442.
3.
Al-Sheikh
,
H.
, and
Moubayed
,
N.
,
2012
, “
An Overview of Simulation Tools for Renewable Applications in Power Systems
,”
2nd International Conference on Advances in Computational Tools for Engineering Applications
(
ACTEA
), Beirut, Lebanon, December 12–15, pp.
257
261
10.1109/ICTEA.2012.6462878.
4.
Wasynezuk
,
O.
,
1983
, “
Dynamic Behavior of a Class of Photovoltaic Power Systems
,”
IEEE Trans. Power Apparatus and Systems
,
9
, pp.
3031
3037
.10.1109/TPAS.1983.318109
5.
Hussein
,
K. H.
,
Muta
,
I.
,
Hoshino
,
T.
, and
Osakada
,
M.
,
1995
, “
Maximum Photovoltaic Power Tracking: An Algorithm For Rapidly Changing Atmospheric Conditions
,”
IEE Proc. Generation, Transmission and Distribution
,
142
, pp.
59
64
10.1049/ip-gtd:19951577.
6.
Karami
,
N.
,
Moubayed
,
N.
, and
Outbib
,
R.
,
2012
, “
Analysis and Implementation of an Adaptative PV Based Battery Floating Charger
,”
Solar Energy
,
86
(
9
), pp.
2383
2396
.10.1016/j.solener.2012.05.009
7.
Becherif
,
M.
, and
Hissel
,
D.
,
2010
, “
MPPT of a PEMFC Based on Air Supply Control of the Motocompressor Group
,”
Int. J. Hydrogen Energy
,
35
(
22
), pp.
12521
12530
.10.1016/j.ijhydene.2010.06.094
8.
Sarvi
,
M.
, and
Barati
,
M. M.
,
2010
, “
Voltage and Current Based MPPT of Fuel Cells Under Variable Temperature Conditions
,”
45th International Universities Power Engineering Conference (UPEC)
, Cardiff, UK, August 31-September 3, pp.
1
4
.
9.
Andrés Ramos-Paja
,
C.
,
Spagnuolo
,
G.
,
Petrone
,
G.
,
Giral
,
R.
, and
Romero
,
A.
,
2010
, “
Fuel Cell MPPT For Fuel Consumption Optimization
,”
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on Circuits and Systems
(
ISCAS
), Paris, May 30–June 2, pp.
2199
2202
10.1109/ISCAS.2010.5537201.
10.
Wang
,
C.
,
Hashem Nehrir
,
M.
, and
Shaw
,
S. R.
,
2005
, “
Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits
,”
Energy Conversion, IEEE Trans.
,
20
(
2
), pp.
442
451
.10.1109/TEC.2004.842357
11.
Larminie
,
J.
,
Dicks
,
A.
, and
McDonald
,
M. S.
,
2003
,
Fuel Cell Systems Explained
, Vol.
2
,
Wiley
,
Chichester
.
12.
Mann
,
R. F.
,
Amphlett
,
J. C.
,
Hooper
,
M. A.
,
Jensen
,
H. M.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
2000
, “
Development and Application of a Generalised Steady-State Electrochemical Model for a PEM Fuel Cell
,”
J. Power Sources
,
86
(
1
), pp.
173
180
.10.1016/S0378-7753(99)00484-X
13.
El-Sharkh
,
M. Y.
,
Rahman
,
A.
,
Alam
,
M. S.
,
Byrne
,
P. C.
,
Sakla
,
A. A.
, and
Thomas
,
T.
,
2004
, “
A Dynamic Model for a Stand-Alone Pem Fuel Cell Power Plant For Residential Applications
,”
J. Power Sources
,
138
(
1
), pp.
199
204
.10.1016/j.jpowsour.2004.06.037
14.
Giustiniani
,
A.
,
Petrone
,
G.
,
Pianese
,
C.
,
Sorrentino
,
M.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
,
2006
, “
PEM Fuel Cells Control by Means of the Perturb and Observe Technique
,”
32nd Annual Conference on IEEE Industrial Electronics
(
IECON 2006
), Paris, November 6–10, pp.
4349
4354
10.1109/IECON.2006.347792.
15.
Gruber
,
J. K.
,
Doll
,
M.
, and
Bordons
,
C.
,
2009
, “
Design and Experimental Validation of a Constrained MPC for the Air Feed of a Fuel Cell
,”
Control Eng. Practice
,
17
(
8
), pp.
874
885
.10.1016/j.conengprac.2009.02.006
16.
Grujicic
,
M.
,
Chittajallu
,
K. M.
,
Law
,
E. H.
, and
Pukrushpan
,
J. T.
,
2004
, “
Model-Based Control Strategies in the Dynamic Interaction of Air Supply And Fuel Cell
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
7
), pp.
487
499
.10.1243/0957650042456999
17.
Woo
,
C. H.
, and
Benziger
,
J. B.
,
2007
, “
PEM Fuel Cell Current Regulation by Fuel Feed Control
,”
Chem. Eng. Sci.
,
62
(
4
), pp.
957
968
.10.1016/j.ces.2006.10.027
18.
Chen
,
P. C.
,
2011
, “
The Dynamics Analysis and Controller Design for the Pem Fuel Cell Under Gas Flowrate Constraints
,”
Int. J. Hydrogen Energy
,
36
(
4
), pp.
3110
3122
.10.1016/j.ijhydene.2010.11.106
19.
Chen
,
P. C.
,
2011
, “
Output-Feedback Voltage Tracking Control for Input-Constrained PEM Fuel Cell Systems
,”
Int. J. Hydrogen Energy
,
36
(
22
), pp.
14608
14621
.10.1016/j.ijhydene.2011.08.039
20.
Bizon
,
N.
,
2010
, “
On Tracking Robustness in Adaptive Extremum Seeking Control of the Fuel Cell Power Plants
,”
Appl. Energy
,
87
(
10
), pp.
3115
3130
.10.1016/j.apenergy.2010.04.007
21.
Zhong
,
Z.
,
Huo
,
H.
,
Zhu
,
X.
,
Cao
,
G.
, and
Ren
,
Y.
,
2008
, “
Adaptive Maximum Power Point Tracking Control of Fuel Cell Power Plants
,”
J. Power Sources
,
176
(
1
), pp.
259
269
.10.1016/j.jpowsour.2007.10.080
22.
Dargahi
,
M.
,
Rezanejad
,
M.
,
Rouhi
,
J.
, and
Shakeri
,
M.
,
2008
, “
Maximum Power Point Tracking for Fuel Cell in Fuel Cell/Battery Hybrid Systems
,”
IEEE International Multitopic Conference
(
INMIC 2008
), Karachi, Pakistan, December 23–24, pp.
1
5
10.1109/INMIC.2008.5297256.
23.
Loo
,
K. H.
,
Zhu
,
G. R.
,
Lai
,
Y. M.
, and
Tse
,
Chi K.
,
2011
, “
Development of a Maximum-Power-Point Tracking Algorithm for Direct Methanol Fuel Cell and Its Realization in a Fuel Cell/Supercapacitor Hybrid Energy System
,”
IEEE 8th International Conference on Power Electronics and ECCE Asia
(
ICPE & ECCE
), Jeju, South Korea, May 30–June 3, pp.
1753
1760
10.1109/ICPE.2011.5944478.
24.
Egiziano
,
L.
,
Giustiniani
,
A.
,
Petrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
,
2009
, “
Optimization of Perturb and Observe Control of Grid Connected PEM Fuel Cells
,”
2009 International Conference on Clean Electrical Power
, Capri, Italy, June 9–11, pp.
775
781
10.1109/ICCEP.2009.5211962.
25.
Rslan
,
H.
,
Ahmed
,
M.
,
Orabi
,
M.
, and
Youssef
,
M.
,
2010
, “
Development of Grid Connected Power Conditioner System Compatible With Fuel Cell Applications
,”
2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems
(
PEDG
), Hefei, China, June 16–18, pp.
935
941
10.1109/PEDG.2010.5545747.
26.
Ramos
,
C. A.
,
Romero
,
A.
,
Giral
,
R.
, and
Martinez-Salamero
,
L.
,
2007
, “
Maximum Power Point Tracking Strategy for Fuel Cell Power Systems
,”
IEEE International Symposium on Industrial Electronics
(
ISIE 2007
), Vigo, Spain, June 4–7, pp.
2613
2618
10.1109/ISIE.2007.4375020.
27.
Sammes
,
N. M.
,
2006
,
Fuel Cell Technology: Reaching Towards Commercialization
,
Springer-Verlag
,
London
.
28.
Appleby
,
A. J.
,
1988
,
Fuel Cell Handbook
, Van Nostrand Reinhold Co. Inc., New York.
29.
Spiegel
,
C.
,
2011
,
PEM Fuel Cell Modeling And Simulation Using MATLAB
,
Academic
,
New York
.
30.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harris
,
T. J.
,
1995
, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell I. Mechanistic Model Development
,”
J. Electrochem. Soc.
,
142
(
1
), pp.
1
8
.10.1149/1.2043866
31.
Karami
,
N.
,
Outbib
,
R.
, and
Moubayed
,
N.
,
2012
, “
A Low-Cost Microcontroller Based 500-Watt PEM Fuel Cell Emulator
,”
IEEE International Systems Conference
(
SysCon
), Vancouver, BC, Canada, March 19–22, pp.
1
4
10.1109/SysCon.2012.6189439.
32.
Lee
,
J. H.
,
Lalk
,
T. R.
, and
Appleby
,
A. J.
,
1998
, “
Modeling Electrochemical Performance in Large Scale Proton Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
70
(
2
), pp.
258
268
.10.1016/S0378-7753(97)02683-9
33.
Hirschenhofer
,
J. H.
,
Stauffer
,
D. B.
,
Engleman
,
R. R.
, and
Klett
,
M. G.
,
1998
,
Fuel Cell Handbook
. Office of Fossil Energy, Federal Energy Technology Center, U.S. Department of Energy, Washington, DC.
34.
Kordesch
,
K.
, and
Simader
,
G.
,
1996
,
Fuel Cells and Their Applications
, Vol.
117
,
VCH
,
Weinheim
, Germany.
35.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
,
2004
,
Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design
,
Springer-Verlag
,
Berlin
.
36.
Sonntag
,
R. E.
,
Borgnakke
,
C.
,
Van Wylen
,
G. J.
, and
Wyk
,
S. V.
,
1998
,
Fundamentals of Thermodynamics
,
Wiley
,
New York
.
37.
Nguyen
,
T. V.
, and
White
,
R. E.
,
1993
, “
A Water and Heat Management Model For Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
8
), pp.
2178
2186
.10.1149/1.2220792
38.
Laurencelle
,
F.
,
Chahine
,
R.
,
Hamelin
,
J.
,
Agbossou
,
K.
,
Fournier
,
M.
,
Bose
,
T. K.
, and
Laperriere
,
A.
,
2001
, “
Characterization of a Ballard MK5-E Proton Exchange Membrane Fuel Cell Stack
,”
Fuel Cells
,
1
(
1
), pp.
66
71
.10.1002/1615-6854(200105)1:1<66::AID-FUCE66>3.0.CO;2-3
39.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
,
1994
, “
Parametric Modelling of the Performance of a 5-kW Proton-Exchange Membrane Fuel Cell Stack
,”
J. Power Sources
,
49
(
1
), pp.
349
356
.10.1016/0378-7753(93)01835-6
40.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.10.1149/1.2085971
41.
Guzzella
,
L.
,
1999
, “
Control Oriented Modelling of Fuel-Cell Based Vehicles
,”
Presentation in NSF Workshop on the Integration of Modeling and Control for Automotive Systems
, Santa Barbara, CA, June 5–6.
42.
Souleman
,
N. M.
,
Tremblay
,
O.
, and
Dessaint
,
L. A.
,
2009
, “
A Generic Fuel Cell Model for the Simulation of Fuel Cell Power Systems
,”
IEEE Power & Energy Society General Meeting
(
PES'09
), Calgary, AB, Canada, July 26–30, pp.
1
8
10.1109/PES.2009.5275853.
43.
Karami
,
N.
,
Outbib
,
R.
, and
Moubayed
,
N.
,
2012
, “
Fuel Flow Control of a PEM Fuel Cell With MPPT
,”
IEEE International Symposium on Intelligent Control
(
ISIC
), Dubrovnik, Croatia, October 3–5, pp.
289
294
10.1109/ISIC.2012.6398246.
44.
O'Hayre
,
R. P.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2006
,
Fuel Cell Fundamentals
,
John Wiley & Sons
,
New York
.
45.
Heywood
,
J. B.
,
1998
,
Internal Combustion Engine Fundamentals
, Vol.
930
,
McGraw-Hill
New York
.
46.
Noguchi
,
T.
,
Togashi
,
S.
, and
Nakamoto
,
R.
,
2002
, “
Short-Current Pulse-Based Maximum-Power-Point Tracking Method for Multiple Photovoltaic-and-Converter Module System
,”
IEEE Trans. Industrial Electronics
,
49
(
1
), pp.
217
223
.10.1109/41.982265
47.
Enslin
,
J. H. R.
,
Wolf
,
M. S.
,
Snyman
,
D. B.
, and
Swiegers
,
W.
,
1997
, “
Integrated Photovoltaic Maximum Power Point Tracking Converter
,”
IEEE Trans. Industrial Electronics
,
44
(
6
), pp.
769
773
.10.1109/41.649937
48.
Suh
K. W.
, and
Stefanopoulou
,
A. G.
,
2007
, “
Performance Limitations of Air Flow Control in Power-Autonomous Fuel Cell Systems
,”
IEEE Trans. Control Systems Technology
,
15
(
3
), pp.
465
473
.10.1109/TCST.2007.894640
49.
Vahidi
,
A.
,
Stefanopoulou
,
A.
, and
Peng
,
H.
,
2006
, “
Current Management in a Hybrid Fuel Cell Power System: A Model-Predictive Control Approach
,”
IEEE Trans. Control Systems Technology
,
14
(
6
), pp.
1047
1057
.10.1109/TCST.2006.880199
50.
De Francesco
,
M.
, and
Arato
,
E.
,
2002
, “
Start-Up Analysis for Automotive PEM Fuel Cell Systems
,”
J. Power Sources
,
108
(
1
), pp.
41
52
.10.1016/S0378-7753(02)00003-4
51.
Semelsberger
,
T. A.
, and
Borup
,
R. L.
,
2005
, “
Fuel Effects on Start-Up Energy and Efficiency for Automotive PEM Fuel Cell Systems
,”
Int. J. Hydrogen Energy
,
30
(
4
), pp.
425
435
.10.1016/j.ijhydene.2004.11.007
52.
Kolavennu
,
P.
,
Telotte
,
J. C.
, and
Palanki
,
S.
,
2009
, “
Analysis of Battery Backup and Switching Controller for a Fuel-Cell Powered Automobile
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
380
387
.10.1016/j.ijhydene.2008.09.054
53.
Al-Sheikh
,
H.
, and
Moubayed
,
N.
,
2012
, “
Fault Detection and Diagnosis of Renewable Energy Systems: An Overview
,”
International Conference on Renewable Energies for Developing Countries
(
REDEC
), Beirut, Lebanon, November 28–29, pp.
1
7
10.1109/REDEC.2012.6416687.
54.
Gardner
,
D.
,
Crawford
,
A. M.
, and
Wang
,
S.
,
2001
, “
High Frequency (GHz) and Low Resistance Integrated Inductors Using Magnetic Materials
,”
IEEE International Interconnect Technology Conference
(
IITC
), Burlingame, CA, June 4–6, pp.
101
103
10.1109/IITC.2001.930029.
You do not currently have access to this content.