In this article, a combined heat and power (CHP) system using a solid oxide fuel cell and mini gas turbine is introduced. Since a fuel cell is the main power generating source in hybrid systems, in this investigation, complete electrochemical and thermal calculations in the fuel cell are carried out in order to obtain more accurate results. An examination of the hybrid system performance indicates that increasing of the working pressure and rate of air flow into the system, cause the cell temperature to reduce, the efficiency and the power generated by the system to diminish, and the entropy generation rate and exergy destruction rate to increase. On the other hand, increasing the flow rate of the incoming fuel, the rise in cell temperature causes the efficiency, generated power, and exergy destruction rate of the system to increase.

References

References
1.
Ho Lee
,
K.
, and
Strand
,
R. K.
,
2009
, “
SOFC Cogeneration System for Building Applications, Part 1: Development of SOFC System-Level Model and the Parametric Study
,”
J. Renewable Sustainable Energy
,
34
(
12
), pp.
2831
2838
.10.1016/j.renene.2009.04.010
2.
Paska
,
J.
,
Biczel
,
P.
, and
Klos
,
M.
,
2009
, “
Hybrid Power Systems—An Effective Way of Utilising Primary Energy Sources
,”
J. Renewable Sustainable Energy
,
34
(
11
), pp.
2414
2421
.10.1016/j.renene.2009.02.018
3.
Ho Lee
,
K.
, and
Strand
,
R. K.
,
2009
, “
SOFC Cogeneration System for Building Applications, Part 2: System Configuration and Operating Condition Design
,”
J. Renewable Sustainable Energy
,
34
(
12
), pp.
2839
2846
.10.1016/j.renene.2009.04.012
4.
Bessette
,
N. F.
, and
Pierre
,
J. F.
,
2000
, “
Status of Siemens Westinghouse Tubular Solid Oxide Fuel Cell Technology and Development Program
,” Fuel Cells—Powering the 21st Century: 2000 Fuel Cell Seminar, Portland, OR, October 30–November 2, Courtesy Assoc., Washington, DC, pp.
519
521
.
5.
Harvey
,
S. P.
, and
Richter
,
H. J.
,
1994
, “
Gas Turbine Cycles With Solid Oxide Fuel Cells, Part I
,”
J. Energy Resour. Technol.
,
116
, pp.
305
318
.10.1115/1.2906458
6.
Lee
,
G.
, and
Sudhoff
,
F.
,
1996
, “
Fuel Cell/Gas Turbine System Performance Studies
,”
Fuel Cells ‘96 Review Meeting
,
Morgantown, WV, August 20–21
, Paper No. DOE/METC/C-97/7278.
7.
Chaney
,
J.
,
Tharp
,
R.
,
Wolf
,
W.
,
Fuller
,
A.
, and
Hartvigson
,
J.
,
1999
, “
Fuel Cell/Micro Turbine Combined Cycle
,” McDermott Technology, Inc., Alliance, OH,
DOE
Contract No. DE-AC26-98FT40454. 10.2172/802823
8.
Massardo
,
A. F.
, and
Lubelli
,
F.
,
2000
, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC–GT): Part I—Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
27
35
.10.1115/1.483187
9.
Singhal
,
S. C.
,
2000
, “
Advances in Solid Oxide Fuel Cell Technology
,”
J. Solid State. Ion.
,
135
, pp.
305
313
.10.1016/S0167-2738(00)00452-5
10.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2001
, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
,
96
(
2
), pp.
352
368
.10.1016/S0378-7753(00)00668-6
11.
Palsson
,
J.
,
2002
, “
Thermodynamic Modeling and Performance of Combined Solid Oxide Fuel Cell and Gas Turbine System
,” Ph.D. thesis, Lund University of Sweden, Lund, Sweden.
12.
Selimovic
,
A.
,
2002
, “
Modeling of Solid Oxide Fuel Cells Applied to the Analysis of Integrated Systems With Gas Turbines
,” Ph.D. thesis, Lund University of Sweden, Lund, Sweden.
13.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
,
2002
, “
Modeling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant
,”
J. Power Sources
,
109
, pp.
111
120
.10.1016/S0378-7753(02)00051-4
14.
Uechi
,
H.
,
Kimijima
,
S.
, and
Kasagi
,
N.
,
2004
, “
Cycle Analysis of Gas Turbine-Fuel Cell Cycle Hybrid Micro Generation System
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
755
762
.10.1115/1.1787505
15.
Rajashekara
,
K.
,
2004
, “
Hybrid Fuel Cell Strategies for Clean Power Generation
,”
IEEE Trans. Ind. Appl.
,
41
(
3
), pp.
682
689
.10.1109/TIA.2005.847293
16.
Motahar
,
S.
, and
Alemrajabi
,
A. A.
,
2009
, “
Exergy Based Performance Analysis of a Solid Oxide Fuel Cell and Steam Injected Gas Turbine Hybrid Power System
,”
Int. J. Hydrogen Energy
,
34
, pp.
2396
2407
.10.1016/j.ijhydene.2008.12.065
17.
Lai
,
W. H.
,
Hsiao
,
C. A.
,
Lee
,
C. H.
,
Chyou
,
Y. P.
, and
Tsai
,
Y. C.
,
2007
, “
Experimental Simulation on the Integration of Solid Oxide Fuel Cell and Micro-Turbine Generation System
,”
J. Power Sources
,
171
, pp.
130
139
.10.1016/j.jpowsour.2006.11.017
18.
Haseli
,
Y.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2008
, “
Thermodynamic Analysis of a Combined Gas Turbine Power System With a Solid Oxide Fuel Cell Through Exergy
,”
Thermochim. Acta
,
480
, pp.
1
9
.10.1016/j.tca.2008.09.007
19.
Cocco
,
D.
, and
Tola
,
V.
,
2009
, “
Externally Reformed Solid Oxide Fuel Cell–Micro-Gas Turbine (SOFC–MGT) Hybrid Systems Fueled by Methanol and Di-Methyl-Ether (DME)
,”
J. Energy
,
34
, pp.
2124
2130
.10.1016/j.energy.2008.09.013
20.
Komatsu
,
Y.
, and
Kimijima
,
S.
,
2010
, “
Performance Analysis for the Part-Load Operation of a Solid Oxide Fuel Cell–Micro Gas Turbine Hybrid System
,”
J. Energy
,
35
, pp.
982
988
.10.1016/j.energy.2009.06.035
21.
Zhao
,
Y.
,
Shah
,
N.
, and
Brandon
,
N.
,
2011
, “
Comparison Between Two Optimization Strategies for Solid Oxide Fuel Cell-Gas Turbine Hybrid Cycles
,”
J. Hydrogen Energy
,
36
, pp.
10235
10246
.10.1016/j.ijhydene.2010.11.015
22.
Zhao
,
Y.
,
Sadhukhan
,
J.
,
Lanzini
,
A.
,
Brandon
,
N.
, and
Shah
,
N.
,
2011
, “
Optimal Integration Strategies for a Syngas Fuelled SOFC and Gas Turbine Hybrid
,”
J. Power Sources
,
196
, pp.
9516
9527
.10.1016/j.jpowsour.2011.07.044
23.
Cheddie
,
D. F.
,
2011
, “
Thermo-Economic Optimization of an Indirectly Coupled Solid Oxide Fuel Cell/Gas Turbine Hybrid Power Plant
,”
J. Hydrogen Energy
,
36
. pp.
1702
1709
.10.1016/j.ijhydene.2010.10.089
24.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
, pp.
130
140
.10.1016/S0378-7753(00)00556-5
25.
National Energy Technology Laboratory,
2004
,
Fuel Cell Handbook
,
7th ed.
,
U.S. Department of Energy
,
Morgantown, WV
.
26.
Ghanbari Bavarsad
,
P.
,
2007
, “
Energy and Exergy Analysis of Internal Reforming Solid Oxide Fuel Cell–Gas Turbine Hybrid System
,”
J. Hydrogen Energy
,
32
, pp.
4591
4599
.10.1016/j.ijhydene.2007.08.004
27.
Bo
,
C.
,
Yuan
,
C.
,
Zhao
,
X.
,
Wu
,
C. B.
,
Li.
M.
, and
Qing
,
M.
,
2009
, “
Parametric Analysis of Solid Oxide Fuel Cell
,”
J. Clean. Technol. Environ. Policy
,
11
(
4
), pp.
391
399
.10.1007/s10098-009-0197-4
28.
Akkaya
,
A. V.
,
Sahin
,
B.
, and
Erdem
,
H. H.
,
2007
, “
Exergetic Performance Coefficient Analysis of a Simple Fuel Cell System
,”
J. Hydrogen Energy
,
32
, pp.
4600
4609
.10.1016/j.ijhydene.2007.03.038
29.
Akkaya
,
A. V.
,
2007
, “
Electrochemical Model for Performance Analysis of a Tubular SOFC
,”
J. Energy Research
,
31
, pp.
79
98
.10.1002/er.1238
30.
Akkaya
,
A. V.
,
Sahin
,
B.
, and
Erdem
,
H. H.
,
2008
, “
An Analysis of SOFC/GT CHP System Based on Exergetic Performance Criteria
,”
J. Hydrogen Energy
,
33
, pp.
2566
2577
.10.1016/j.ijhydene.2008.03.013
31.
Pirkandi
,
J.
,
Ghassemi
,
M.
,
Hamedi
,
M. H.
, and
Mohammadi
,
R.
,
2012
, “
Electrochemical and Thermodynamic Modeling of a CHP System Using Tubular Solid Oxide Fuel Cell (SOFC-CHP)
,”
J. Cleaner. Prod.
,
29–30
, pp.
151
162
.10.1016/j.jclepro.2012.01.038
32.
Ciesar
,
J. A.
,
2001
, “
Hybrid Systems Development by the Siemens Westinghouse Power Corporation
,” U.S. Department of Energy, Natural Gas/Renewable Energy Hybrids Workshop, Morgantown, WV, August 7–8.
You do not currently have access to this content.