In this study, a model of current densities for a ten-cell solid oxide fuel cell (SOFC) stack is learned and developed due to the utilization of an improved backpropagation neural network (BPNN). To build the learning data of the BPNN, the operating parameters are suitably arranged by the Taguchi orthogonal array, which totals seven factors with five levels, respectively, that act as the inputs of BPNN. Also, the average current densities for the ten-cell SOFC stack achieved by the numerical method act as the outputs of the BPNN. The effectiveness of the developed BPNN mathematical algorithm to predict performance of the SOFC stack is proved by the learning errors smaller than 0.11% and the predicting errors less than 0.52%. Then, the calculating algorithms of the BPNN are adopted to proceed with the optimization based on the electrical performance of the sum of the average current densities for the ten-cell SOFC stack. Thus, the best and the worst performances are found to be Fmax = 57795.622 Am−2 and Fmin = 33939.362 Am−2, respectively. It is also the operating window of the performance for the SOFC stack developed by the improved BPNN. Furthermore, an inverse predicting model of the SOFC stack is developed by the calculating algorithms of the BPNN. This model is proved to effectively predict the operating parameters to achieve a desired performance output of the SOFC stack. Combination of these calculating algorithms developed by the improved BPNN gives the possibility to complete dynamic control of the operating parameters, such as the mole fraction of species and mole flow rate in the inlet, which are considered to be changeable.

References

References
1.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
, I
.
,
2001
, “
3-D Model Calculation for Planar SOFC
,”
J. Power Sources
,
102
, pp.
144
154
.10.1016/S0378-7753(01)00792-3
2.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
,
2003
, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
,
113
, pp.
109
114
.10.1016/S0378-7753(02)00487-1
3.
Lu
,
Y.
,
Schaefer
,
L.
, and
Li
,
P.
,
2005
, “
Numerical Simulation of Heat Transfer and Fluid Flow of a Flat-Tube High Power Density Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
2
, pp.
65
69
.10.1115/1.1843120
4.
Huang
,
J. J.
,
Chen
C. K.
, and
Lai
D. Y.
,
2005
, “
Computational Analysis of Species Transport and Electrochemical Characteristics of a MOLB-Type SOFC
,”
J. Power Sources
,
140
, pp.
235
242
.10.1016/j.jpowsour.2004.08.028
5.
Ji
,
Y.
,
Yuana
,
K.
,
Chunga
,
J. N.
, and
Chen
,
Y. C.
,
2006
, “
Effects of Transport Scale on Heat/Mass Transfer and Performance Optimization for Solid Oxide Fuel Cells
,”
J. Power Sources
,
161
, pp.
380
391
.10.1016/j.jpowsour.2006.04.097
6.
Janardhanan
,
V. M.
,
Heuveline
,
V.
, and
Deutschmann
,
O.
,
2007
, “
Performance Analysis of a SOFC Under Direct Internal Reforming Conditions
,”
J. Power Sources
,
172
, pp.
296
307
.10.1016/j.jpowsour.2007.07.008
7.
Haberman
,
B. A.
, and
Young
,
J. B.
,
2008
, “
A Detailed Three-Dimensional Simulation of an IP-SOFC Stack
,”
ASME J. Fuel Cell Sci. Technol.
,
5
, pp.
1
12
.10.1115/1.2786468
8.
Boersma
,
R. J.
, and
Sammes
,
N. M.
,
1997
, “
Distribution of Gas Flow in Internally Manifolded Solid Oxide Fuel-Cell Stacks
,”
J. Power Sources
,
66
, pp.
41
45
.10.1016/S0378-7753(96)02469-X
9.
Okada
,
T.
,
Matsumoto
,
S.
,
Matsumura
,
M.
,
Miyazaki
,
M.
, and
Umeda
,
M.
,
2006
, “
Gas Distribution in Molten-Carbonate Fuel Cells
,”
J. Power Sources
,
162
, pp.
1029
1035
.10.1016/j.jpowsour.2006.08.012
10.
Yuan
,
P.
, and
Liu
,
S. F.
,
2007
, “
Numerical Analysis of Temperature and Current Density Distribution of a Planar Solid Oxide Fuel Cell Unit With Non-Uniform Inlet Flow
,”
Numer. Heat Transfer, Part A
,
51
, pp.
941
957
.10.1080/10407780601009066
11.
Yuan
,
P.
,
2008
, “
Effect of Inlet Flow Maldistribution in the Stacking Direction on the Performance of a Solid Oxide Fuel Cell Stack
,”
J. Power Sources
,
185
, pp.
381
391
.10.1016/j.jpowsour.2008.06.039
12.
Liu
,
S. F.
,
Chiang
,
M. S.
,
Wang
,
S. B.
, and
Yuan
,
P.
,
2011
, “
Electrical and Thermal Performance of a Solid Oxide Fuel Cell Unit With Non-Uniform Inlet Flow and High Fuel Utilization
,”
ASME J. Fuel Cell Sci. Technol.
,
8
, p.
031002
.10.1115/1.4002228
13.
Arriagada
,
J.
,
Olausson
,
P.
, and
Selimovic
,
A.
,
2002
, “
Artificial Neural Network Simulator for SOFC Performance Prediction
,”
J. Power Sources
,
112
, pp.
54
60
.10.1016/S0378-7753(02)00314-2
14.
Wu
,
X. J.
,
Zhu
,
X. J.
,
Cao
,
G. Y.
, and
Tu
,
H. Y.
,
2007
, “
Modeling a SOFC Stack Based on GA-RBF Neural Networks Identification
,”
J. Power Sources
,
167
, pp.
145
150
.10.1016/j.jpowsour.2007.01.086
15.
Milewski
,
J.
, and
Świrski
,
K.
,
2009
, “
Modelling the SOFC Behaviours by Artificial Neural Network
,”
Int. J. Hydrogen Energy
,
34
, pp.
5546
5553
.10.1016/j.ijhydene.2009.04.068
16.
Larminie
,
J.
, and
Dicks
,
A.
,
2000
,
Fuel Cell Systems Explained
,
1st ed.
,
Wiley
,
New York
, p.
53
.
17.
Maric
,
R.
,
Ohara
,
S.
,
Fukui
,
T.
,
Yoshida
,
H.
,
Nishimura
,
M.
,
Inagaki
,
T.
, and
Miura
,
K.
,
1999
, “
Solid Oxide Fuel Cells With Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni-Samaria-Doped Ceria Cermet Anode
,”
J. Electrochem. Soc.
,
146
, pp.
2006
2010
.10.1149/1.1391882
18.
Hines
,
A. L.
, and
Maddox
,
R. N.
,
1985
,
Mass Transfer Fundamentals and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
17
59
.
19.
Wang
,
S. B.
, and
Wu
,
C. F.
,
2006
, “
Selections of Working Conditions for Creep Feed Grinding. Part (III): Avoidance of the Work Piece Burning by Using Improved BP Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
28
, pp.
31
37
.10.1007/s00170-004-2343-9
20.
Rangwala
,
S.
, and
Dornfeld
,
D.
,
1989
, “
Learning and Optimization of Machining Operations Using Computing Abilities of Neural Networks
,”
IEEE Trans. Syst. Man Cybern.
,
19
(
2
), pp.
299
314
.10.1109/21.31035
21.
Taguchi
,
G.
,
1991
,
Introduction to Quality Engineering
,
Asian Productivity Organization
,
UNIPUB, White Plains, NY
.
You do not currently have access to this content.