A steady-state, isothermal, one-dimensional model of a direct methanol proton exchange membrane fuel cell (PEMFC), with a polybenzimidazole (PBI) membrane, was developed. The electrode kinetics were represented by the Butler–Volmer equation, mass transport was described by the multicomponent Stefan–Maxwell equations and Darcy's law, and the ionic and electronic resistances described by Ohm's law. The model incorporated the effects of temperature and pressure on the open circuit potential, the exchange current density, and diffusion coefficients, together with the effect of water transport across the membrane on the conductivity of the PBI membrane. The influence of methanol crossover on the cathode polarization is included in the model. The polarization curves predicted by the model were validated against experimental data for a direct methanol fuel cell (DMFC) operating in the temperature range of 125–175 °C. There was good agreement between experimental and model data for the effect of temperature and oxygen/air pressure on cell performance. The fuel cell performance was relatively poor, at only 16 mW cm−2 peak power density using low concentrations of methanol in the vapor phase.

References

References
1.
Wainright
,
J. S.
,
Wang
,
J. T.
, and
Savinell
,
R. F.
,
1996
, “
Direct Methanol Fuel Cells Using Acid Doped Polybenzimidazole as a Polymer Electrolyte
,”
Intersociety Energy Conversion Engineering Conference
,
2
, pp.
1107
1111
.
2.
Lobato
,
J.
,
Cañizares
,
P.
,
Rodrigo
,
M. A.
,
Linares
,
J. J.
, and
López-Vizcaíno
,
R.
,
2008
, “
Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell
,”
Energy Fuels
,
22
(
5
), pp.
3335
3345
10.1021/ef8001839.
3.
Kadirgan
,
F.
, and
Savadogo
,
O.
,
2004
, “
Methanol Crossover Through Modified Nafion Proton Exchange Membrane
,”
Russ. J. Electrochem.
,
40
(
11
), pp.
1141
1145
.10.1023/B:RUEL.0000048645.32773.b5
4.
Liu
,
Z.
,
Wainright
,
J. S.
, and
Savinell
,
R. F.
,
2004
, “
High-Temperature Polymer Electrolytes for PEM Fuel Cells: Study of the Oxygen Reduction Reaction (ORR) at a Pt-Polymer Wlectrolyte Interface
,”
Chem. Eng. Sci.
,
59
(
22–23
), pp.
4833
4838
.10.1016/j.ces.2004.09.024
5.
Gubler
,
L.
,
Denis
,
K.
,
Jorg
,
B.
,
Omer
,
U.
,
Thomas
,
J. S.
, and
Gunther
,
G. S.
,
2007
, “
Celtec-V
,”
J. Electrochem. Soc.
,
154
(
9
), pp.
B981
B987
.10.1149/1.2754078
6.
He
,
C.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
,
1997
, “
Evaluation of Platinum-Based Catalysts for Methanol Electro-Oxidation in Phosphoric Acid Electrolyte
,”
J. Electrochem. Soc.
,
144
(
3
), pp.
970
979
.10.1149/1.1837515
7.
Pu
,
H.
,
Liu
,
Q.
, and
Liu
,
G.
,
2004
, “
Methanol Permeation and Proton Conductivity of Acid-Doped Poly(N-ethylbenzimidazole) and Poly(N-methylbenzimidazole)
,”
J. Membrane Sci.
,
241
(
2
), pp.
169
175
.10.1016/j.memsci.2004.03.008
8.
Nordlund
,
J.
, and
Lindbergh
,
G.
,
2004
, “
Temperature-Dependent Kinetics of the Anode in the DMFC
,”
J. Electrochem. Soc.
,
151
(
9
), pp.
A1357
A1362
.10.1149/1.1773580
9.
Baxter
,
S. F.
,
Battaglia
,
V. S.
, and
White
,
R. E.
,
1999
, “
Methanol Fuel Cell Model: Anode
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
437
447
.10.1149/1.1391626
10.
Ge
,
J.
, and
Liu
,
H.
,
2006
, “
A Three-Dimensional Mathematical Model for Liquid-Fed Direct Methanol Fuel Cells
,”
J. Power Sources
,
160
(
1
), pp.
413
421
.10.1016/j.jpowsour.2006.02.001
11.
Liu
,
W.
, and
Wang
,
C. Y.
,
2007
, “
Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
154
, pp.
B352
B361
.10.1149/1.2429041
12.
Chen
,
C. H.
and
Yeh
,
T. K.
,
2006
, “
A Mathematical Model for Simulating Methanol Permeation and the Mixed Potential Effect in a Direct Methanol Fuel Cell
,”
J. Power Sources
,
160
(
2
), pp.
1131
1141
.10.1016/j.jpowsour.2006.03.005
13.
Murgia
,
G.
,
Pisani
,
L.
,
Shukla
,
A. K.
, and
Scott
,
K.
,
2003
, “
A Numerical Model of a Liquid-Feed Solid Polymer Electrolyte DMFC and Its Experimental Validation
,”
J. Electrochem. Soc.
,
150
(
9
), pp.
A1231
A1245
.10.1149/1.1596951
14.
Mamlouk
,
M.
,
Scott
,
K.
, and
Hidayati
,
N.
,
2011
, “
High Temperature Direct Methanol Fuel Cell Based on Phosphoric Acid PBI Membrane-Article #061009
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
6
), pp.
1
8
10.1115/1.4004557.
15.
Mamlouk
,
M.
,
2008
, “
Investigation of High Temperature Polymer Electrolyte Membrane Fuel Cells
,”
School of Chemical Engineering and Advance Materials
,
Newcastle University, Newcastle Upon Tyne, UK
.
17.
Yaws
,
C. L.
,
2003
,
Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds
,
Knovel
, http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=667&VerticalID=0.
18.
Liu
,
Z.
,
Wainright
,
J. S.
,
Litt
,
M. H.
, and
Savinell
,
R. F.
,
2006
, “
Study of the Oxygen Reduction Reaction (ORR) at Pt Interfaced With Phosphoric Acid Doped Polybenzimidazole at Elevated Temperature and Low Relative Humidity
,”
Electrochim. Acta
,
51
(
19
), pp.
3914
3923
.10.1016/j.electacta.2005.11.019
19.
Scott
,
K.
,
Pilditch
,
S.
, and
Mamlouk
,
M.
,
2007
, “
Modelling and Experimental Validation of a High Temperature Polymer Electrolyte Fuel Cell
,”
J. Appl. Electrochem.
,
37
, pp.
1245
1259
.10.1007/s10800-007-9414-1
20.
Scott
,
K.
, and
Mamlouk
,
M.
,
2009
, “
A Cell Voltage Equation for an Intermediate Temperature Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
34
(
22
), pp.
9195
9202
.10.1016/j.ijhydene.2009.09.035
21.
Scott
,
K.
and
Mamlouk
,
M.
,
2011
, “
A Study of Oxygen Reduction on Carbon-Supported Platinum Fuel Cell Electrocatalysts in Polybenzimidazole/Phosphoric Acid
,”
Proc. IMechE Part A: J. Power and Energy
225
(
2
), pp.
161
174
.10.1177/0957650910397103
22.
Watanabe
,
M.
,
Genjima
,
Y.
, and
Turumi
,
K.
,
1997
, “
Direct Methanol Oxidation on Platinum Electrodes With Ruthenium Adatoms in Hot Phosphoric Acid
,”
J. Electrochem. Soc.
,
144
(
2
), pp.
423
427
.10.1149/1.1837426
23.
Wainright
,
J. S.
,
Wang
,
J. T.
,
Weng
,
D.
,
Savinell
,
R. F.
, and
Litt
,
M.
,
1995
, “
Acid-Doped Polybenzimidazoles—A New Polymer Electrolyte
.”
J. Electrochem. Soc.
,
142
(
7
), pp.
L121
L123
.10.1149/1.2044337
24.
Jones
,
D. J.
and
Roziere
,
J.
,
2001
, “
Recent Advances in the Functionalisation of Polybenzimidazole and Polyetherketone for Fuel Cell Applications
,”
J. Membrane Sci.
,
185
(
1
), pp.
41
58
.10.1016/S0376-7388(00)00633-5
25.
Mamlouk
,
M.
, and
Scott
,
K.
,
2011
, “
A Study of Oxygen Reduction on Carbon-Supported Platinum Fuel Cell Electrocatalysts in Polybenzimidazole/Phosphoric Acid
,”
Proc. IMechE A J. Power Energy
,
225
(
2
), pp.
161
174
.10.1177/0957650910397103
26.
Wasmus
,
S.
,
Wang
,
J. T.
, and
Savinell
,
R. F.
,
1995
, “
Real-Time Mass Spectrometric Investigation of the Methanol Oxidation in a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
142
(
11
), pp.
3825
3833
.10.1149/1.2048420
27.
Ma
,
Y. L.
,
Wainright
,
J. S.
,
Litt
,
M. H.
, and
Savinell
,
R. F.
,
2004
, “
Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
1
), pp.
A8
A16
.10.1149/1.1630037
28.
Hoare
,
J.
,
1962
, “
Rest Potentials in the Platinum-Oxygen-Acid System
,”
J. Electrochem. Soc.
,
109
(
9
), pp.
858
865
.10.1149/1.2425569
29.
Thacker
,
R.
and
Hoare
,
J.
,
1971
, “
Sorption of Oxygen From Solution by Noble Metals
,”
Electroanal. Chem. Interfac. Electrochem.
,
30
(
1
), pp.
1
14
.10.1016/0368-1874(71)85027-X
30.
Wainright
,
J. S.
,
Wang
,
J. T.
, and
Savinell
,
R. F.
,
1996
, “
Direct Methanol Fuel Cells Using Acid Doped Polybenzimidazole as a Polymer Electrolyte
,”
Intersociety Energy Conversion Engineering Conference
,
Washington, DC
.
31.
Wang
,
J. T.
,
Lin
,
W. F.
,
Weber
,
M.
,
Wasmus
,
S.
, and
Savinell
,
R. F.
,
1998
, “
Trimethoxymethane as an Alternative Fuel for a Direct Oxidation PBI Polymer Electrolyte Fuel Cell
,”
Electrochim. Acta
,
43
(
24
), pp.
3821
3828
.10.1016/S0013-4686(98)00142-X
You do not currently have access to this content.