A 10-cell high-temperature polymer electrolyte fuel cell (HT-PEFC) stack with an active cell area of 200 cm2 has been built up and tested with regard to the temperature distribution from cell to cell and over the active area since not every cell is cooled. Measurements with artificial reformate as a fuel show that the vertical temperature distribution over the active area is sufficiently small, with a maximum of 5.1 K at 550 mA cm−2. Additionally, the temperature gradient from cell to cell is sufficiently small with 10.7 K at 550 mA cm−2. As a result, it can be concluded that the heat pipe supported external cooling is well suited to cool HT-PEFC stacks with large active areas in reformate operation.

References

References
1.
Brodrick
,
C.-J.
,
Lipman
,
T. E.
,
Farshchi
,
M.
,
Lutsey
,
N. P.
,
Dwyer
,
H. A.
,
Sperling
,
D.
,
Gouse
,
S. W.
III
,
Harris
,
D. B.
, and
King
,
F. G.
, Jr.
,
2002
, “
Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks
,”
Transp. Res. D
,
7
(
4
), pp.
303
315
.10.1016/S1361-9209(01)00026-8
2.
Li
,
Q.
,
Jensen
,
J. O.
,
Savinell
,
R. F.
, and
Bjerrum
,
N. J.
,
2009
, “
High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells
,”
Prog. Polym. Sci.
,
34
(
5
), pp.
449
477
.10.1016/j.progpolymsci.2008.12.003
3.
Zhang
,
J.
,
Xie
,
Z.
,
Tang
,
Y.
,
Song
,
C.
,
Navessin
,
T.
,
Shi
,
Z.
,
Song
,
D.
,
Wang
,
H.
, and
Wilkinson
,
D.
,
2006
, “
High Temperature PEM Fuel Cells
,”
J. Power Sources
,
160
(
2
), pp.
872
891
.10.1016/j.jpowsour.2006.05.034
4.
Li
,
Q.
,
He
,
R.
,
Gao
,
J.-A.
,
Jensen
,
J. O.
, and
Bjerrum
,
N. J.
,
2003
, “
The CO Poisoning Effect in PEMFCs Operational at Temperatures Up to 200 °C
,”
J. Electrochem. Soc.
,
150
(
12
), p.
A1599
.10.1149/1.1619984
5.
Krishnan
,
P.
,
Park
,
J.-S.
, and
Kim
,
C.-S.
,
2006
, “
Performance of a Poly(2,5-Benzimidazole) Membrane Based High Temperature PEM Fuel Cell in the Presence of Carbon Monoxide
,”
J. Power Sources
,
159
(
2
), pp.
817
823
.10.1016/j.jpowsour.2005.11.071
6.
Peters
,
R.
,
2010
,
Auxiliary Power Units for Light-Duty Vehicles, Trucks, Ships, and Airplanes
,
Wiley-VCH
,
Weinheim, Germany
.
7.
Sasmito
,
A. P.
,
Shamim
,
T.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2012
, “
Computational Study of Edge Cooling for Open-Cathode Polymer Electrolyte Fuel Cell Stacks
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
6
), p.
061008
.10.1115/1.4007792
8.
Andreasen
,
S. J.
,
Ashworth
,
L.
,
Menjón Remón
,
I. N.
, and
Kær
,
S. K.
,
2008
, “
Directly Connected Series Coupled HTPEM Fuel Cell Stacks to a Li-Ion Battery DC Bus for a Fuel Cell Electrical Vehicle
,”
Int. J. Hydrogen Energy
,
33
(
23
), pp.
7137
7145
.10.1016/j.ijhydene.2008.09.029
9.
Andreasen
,
S. J.
, and
Kær
,
S. K.
,
2008
, “
Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
33
(
17
), pp.
4655
4664
.10.1016/j.ijhydene.2008.05.076
10.
Andreasen
,
S.
J.
, and
Kær
,
S.
K.
,
2007
, “
400 W High Temperature PEM Fuel Cell Stack Test
,”
ECS Trans.
,
5
(
1
), pp.
197
207
.10.1149/1.2729002
11.
Harikishan Reddy
,
E.
, and
Jayanti
,
S.
,
2012
, “
Thermal Management Strategies for a 1 kWe Stack of a High Temperature Proton Exchange Membrane Fuel Cell
,”
Appl. Therm. Eng.
,
48
, pp.
465
475
.10.1016/j.applthermaleng.2012.04.041
12.
Zuliani
,
N.
, and
Taccani
,
R.
,
2012
, “
Microcogeneration System Based on HTPEM Fuel Cell Fueled With Natural Gas: Performance Analysis
,”
Appl. Energy
,
97
, pp.
802
808
.10.1016/j.apenergy.2011.12.089
13.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
2nd ed.
,
John Wiley and Sons
,
New York
.
14.
Heinzel
,
A.
,
Bandlamudi
,
G.
, and
Lehnert
,
W.
,
2009
, “
Fuel Cells—Proton-Exchange Membrane Fuel Cells—High Temperature PEMFCs
,”
Encyclopedia of Electrochemical Power Sources
,
G.
Jürgen
, ed.,
Elsevier
,
Amsterdam
, pp.
951
957
.
15.
Zhang
,
G.
, and
Kandlikar
,
S. G.
,
2012
, “
A Critical Review of Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2412
2429
.10.1016/j.ijhydene.2011.11.010
16.
Scholta
,
J.
,
Messerschmidt
,
M.
,
Jörissen
,
L.
, and
Hartnig
,
C.
,
2009
, “
Externally Cooled High Temperature Polymer Electrolyte Membrane Fuel Cell Stack
,”
J. Power Sources
,
190
(
1
), pp.
83
85
.10.1016/j.jpowsour.2008.10.124
17.
Scholta
,
J.
,
Zhang
,
W.
,
Jörissen
,
L.
, and
Lehnert
,
W.
,
2008
, “
Conceptual Design for an Externally Cooled HT-PEMFC Stack
,”
ECS Trans.
,
12
(
1
), pp.
113
118
.10.1149/1.2921538
18.
Moçotéguy
,
P.
,
Ludwig
,
B.
,
Scholta
,
J.
,
Barrera
,
R.
, and
Ginocchio
,
S.
,
2009
, “
Long Term Testing in Continuous Mode of HT-PEMFC Based H3PO4/PBI Celtec-P MEAs for μ-CHP Applications
,”
Fuel Cells
,
9
(
4
), pp.
325
348
.10.1002/fuce.200800134
19.
Moçotéguy
,
P.
,
Ludwig
,
B.
,
Scholta
,
J.
,
Nedellec
,
Y.
,
Jones
,
D. J.
, and
Rozière
,
J.
,
2010
, “
Long-Term Testing in Dynamic Mode of HT-PEMFC H3PO4/PBI Celtec-P Based Membrane Electrode Assemblies for Micro-CHP Applications
,”
Fuel Cells
,
10
(
2
), pp.
299
311
.10.1002/fuce.200900153
20.
Song
,
T.-W.
,
Choi
,
K.-H.
,
Kim
,
J.-R.
, and
Yi
,
J. S.
,
2011
, “
Pumpless Thermal Management of Water-Cooled High-Temperature Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
196
(
10
), pp.
4671
4679
.10.1016/j.jpowsour.2010.12.108
21.
Supra
,
J.
,
Janßen
,
H.
,
Lehnert
,
W.
, and
Stolten
,
D.
,
2013
, “
Temperature Distribution in a Liquid-Cooled HT-PEFC Stack
,”
Int. J. Hydrogen Energy
,
38
(
4
), pp.
1943
1951
.10.1016/j.ijhydene.2012.10.093
22.
Burke
,
K. A.
, “
Advanced Fuel Cell System Thermal Management for NASA Exploration Missions
,”
Proceedings of the Sixth International Energy Conversion Engineering Conference and Exhibit (IECEC)
, Cleveland, OH, July 28–30,
AIAA
Paper No. 2008-5795. 10.2514/6.2008-5795
23.
Dunn
,
P.
, and
Reay
,
D. A.
,
1978
,
Heat Pipes
,
Pergamon
,
New York
.
24.
Reay
,
D. A.
,
Kew
,
P. A.
, and
Dunn
,
P. D.
,
2006
,
Heat Pipes: Theory, Design and Applications
,
Butterworth-Heinemann
,
London
.
25.
Faghri
,
A.
,
1995
,
Heat Pipe Science and Technology
,
Taylor & Francis
,
London
.
26.
Vasiliev
,
L.
,
2008
, “
Heat Pipes in Fuel Cell Technology
,”
Mini-Micro Fuel Cells
,
S.
Kakaç
,
A.
Pramuanjaroenkij
, and
L.
Vasiliev
, eds.,
Springer
,
Houten, The Netherlands
, pp.
117
124
.
27.
Vasiliev
,
L. L.
,
2009
, “
Heat Pipes to Increase the Efficiency of Fuel Cells
,”
Int. J. Low-Carbon Technol.
,
4
(
2
), pp.
96
103
.10.1093/ijlct/ctp011
28.
Niemasz
,
J.
,
Kurz
,
T.
,
Zobel
,
M.
,
Hutzenlaub
,
T.
,
Müller
,
C.
Agert
,
C.
, and
Reinecke
,
H.
,
2007
, “
High Temperature Membrane Fuel Cell With Integrated Heat Pipe
,” PowerMEMS Workshop, Freiburg, Germany, November 28–29, pp.
161
164
.
29.
Faghri
,
A.
,
2005
, “
Micro Heat Pipe Embedded Bipolar Plate for Fuel Cell Stacks
,” U.S. Patent No. 2005/0026015.
30.
Faghri
,
A.
,
2005
, “
Integrated Bipolar Plate Heat Pipe for Fuel Cell Stacks
,” U.S. Patent No. 2005/0037253.
31.
Faghri
,
A.
, and
Guo
,
Z.
,
2008
, “
Integration of Heat Pipe Into Fuel Cell Technology
,”
Heat Transfer Eng.
,
29
(
3
), pp.
232
238
.10.1080/01457630701755902
32.
“Quick-Cool-Shop,” 2009, Quick-Ohm Küpper & Co. GmbH, Wuppertal, Germany, http://www.quick-cool-shop.de/mesh-heatpipes
33.
Samsun
,
R. C.
,
Wiethege
,
C.
,
Pasel
,
J.
,
Janßen
,
H.
,
Lehnert
,
W.
, and
Peters
,
R.
,
2012
, “
HT-PEFC Systems Operating With Diesel and Kerosene for APU Application
,”
Energy Proc.
,
29
, pp.
541
551
.10.1016/j.egypro.2012.09.063
34.
Bendzulla
,
A.
,
2010
,
Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen
,” Forschungszentrum Zentralbibliothek, Jülich, Germany.
35.
“Product Search: SGL Group–The Carbon Company,” 2013, SGL Group, Wiesbaden, Germany, http://www.sglgroup.com/cms/international/products/products-from-a-z/index.html?__locale=en
36.
Lüke
,
L.
,
Janßen
,
H.
,
Kvesić
,
M.
,
Lehnert
,
W.
, and
Stolten
,
D.
,
2012
, “
Performance Analysis of HT-PEFC Stacks
,”
Int. J. Hydrogen Energy
,
37
(
11
), pp.
9171
9181
.10.1016/j.ijhydene.2012.02.190
You do not currently have access to this content.