A reformed methanol fuel cell system is one of the most practical of all types of fuel cell systems. It is regarded as one of the best candidates for stationary applications, such as residential power generators, uninterruptible power supply systems, power generators for cell base stations, or power generators in outlying areas. In this research, a 1-kW self-sustainable proton exchange membrane fuel cell system with a methanol reformer is designed and tested. The system performance test and in situ stack monitoring show that the system is stable and reliable. During normal operation, the maximum voltage deviation among the individual cells, which is caused by a nonuniform temperature distribution in the proton exchange membrane fuel cell stack, is 25 mV. The peak power output of the system reaches 1.4 kW. The maximum electrical efficiency is 65.2% at a system power of 1 kW. The system is operated at 1 kW for 4 h, during which the decay rate of the stack power is 0.94%. During the stability test, voltage fluctuation occurs in a certain cell because of a flooding phenomenon. A demonstration is also presented in this paper to show the system’s practicability and commercial potential.

References

1.
Hart
,
D.
, and
Hörmandinger
,
G. N.
,
1998
, “
Environmental Benefits of Transport and Stationary Fuel Cells
,”
J. Power Sources
,
71
, pp.
348
353
.10.1016/S0378-7753(97)02730-4
2.
Lipman
,
T. E.
,
Edwards
,
J. L.
, and
Kammen
,
D. M.
,
2004
, “
Fuel Cell System Economics: Comparing the Costs of Generating Power With Stationary and Motor Vehicle PEM Fuel Cell Systems
,”
Energy Policy
,
32
, pp.
101
125
.10.1016/S0301-4215(02)00286-0
3.
Emonts
,
B.
,
Hansen
,
J. B.
,
Schmidt
,
H.
,
Grube
,
T.
,
Hohlein
,
B.
,
Peters
,
R.
, and
Tschauder
,
A.
,
2000
, “
Fuel Cell Drive System With Hydrogen Generation in Test
,”
J. Power Sources
,
86
(
1-2
), pp.
228
236
.10.1016/S0378-7753(99)00495-4
4.
Cardinali
,
L.
,
Santomassimo
,
S.
, and
Stefanoni
,
M.
,
2002
, “
Design and Realization of a 300 W Fuel Cell Generator on an Electric Bicycle
,”
J. Power Sources
,
106
, pp.
384
387
.10.1016/S0378-7753(01)01059-X
5.
Lee
,
H. I.
,
Lee
,
C. H.
,
Oh
,
T. Y.
,
Choi
,
S. G.
,
Park
, I
. W.
, and
Baek
,
K. K.
,
2002
, “
Development of 1 kW Class Polymer Electrolyte Membrane Fuel Cell Power Generation System
,”
J. Power Sources
,
107
, pp.
110
119
.10.1016/S0378-7753(01)00989-2
6.
Chang
,
H.-P.
,
Chou
,
C.-L.
,
Chen
,
Y.-S.
,
Hou
,
T.-I.
, and
Weng
,
B.-J.
,
2007
, “
The Design and Cost Analysis of a Portable PEMFC UPS System
,”
Int. J. Hydrogen Energy
,
32
, pp.
316
322
.10.1016/j.ijhydene.2006.04.010
7.
Beckhaus
,
P.
,
Dokupil
,
M.
,
Heinzel
,
A.
,
Souzani
,
S.
, and
Spitta
,
C.
,
2005
, “
On-Board Fuel Cell Power Supply for Sailing Yachts
,”
J. Power Sources
,
145
, pp.
639
643
.10.1016/j.jpowsour.2004.12.078
8.
Psoma
,
A.
, and
Sattler
,
G.
,
2002
, “
Fuel Cell Systems for Submarines: From the First Idea to Serial Production
,”
J. Power Sources
,
106
, pp.
381
383
.10.1016/S0378-7753(01)01044-8
9.
Staffell
, I
.
, and
Green
,
R. J.
,
2009
, “
Estimating Future Prices for Stationary Fuel Cells With Empirically Derived Experience Curves
,”
Int. J. Hydrogen Energy
,
34
, pp.
5617
5628
.10.1016/j.ijhydene.2009.05.075
10.
Kosugi
,
T.
,
Hayashi
,
A.
, and
Tokimatsu
,
K.
,
2004
, “
Forecasting Development of Elemental Technologies and Effect of R&D Investments for Polymer Electrolyte Fuel Cells in Japan
,”
Int. J. Hydrogen Energy
,
29
, pp.
337
346
.10.1016/j.ijhydene.2003.08.001
11.
Gencoglu
,
M. T.
, and
Ural
,
Z.
,
2009
, “
Design of a PEM Fuel Cell System for Residential Application
,”
Int. J. Hydrogen Energy
,
34
, pp.
5242
5248
.10.1016/j.ijhydene.2008.09.038
12.
Boettner
,
D. D.
, and
Moran
,
M. J.
,
2004
, “
Proton Exchange Membrane (PEM) Fuel Cell-Powered Vehicle Performance Using Direct-Hydrogen Fueling and On-Board Methanol Reforming
,”
Energy
,
29
, pp.
2317
2330
.10.1016/j.energy.2004.03.026
13.
Seo
,
Y. T.
,
Seo
,
D. J.
,
Jeong
,
J. H.
, and
Yoon
,
W. L.
,
2006
, “
Development of Compact Fuel Processor for 2 kW Class Residential PEMFCs
,”
J. Power Sources
,
163
, pp.
119
124
.10.1016/j.jpowsour.2006.05.022
14.
Wichert
,
M.
,
Men
,
Y.
,
O’Connell
,
M.
,
Tiemann
,
D.
,
Zapf
,
R.
,
Kolb
,
G.
,
Butschek
,
S.
,
Frank
,
R.
, and
Schiegl
,
A.
,
2011
, “
Self-Sustained Operation and Durability Testing of a 300 W-Class Micro-Structured LPG Fuel Processor
,”
Int. J. Hydrogen Energy
,
36
, pp.
3496
3504
.10.1016/j.ijhydene.2010.12.045
15.
Pareta
,
M.
,
Choudhury
,
S. R.
,
Somaiah
,
B.
,
Rangarajan
,
J.
,
Matre
,
N.
, and
Palande
,
J.
,
2011
, “
Methanol Reformer Integrated Phosphoric Acid Fuel Cell (PAFC) Based Compact Plant for Field Deployment
,”
Int. J. Hydrogen Energy
,
36
, pp.
14771
14778
.10.1016/j.ijhydene.2011.03.044
16.
Aicher
,
T.
,
Full
,
J.
, and
Schaadt
,
A.
,
2009
, “
A Portable Fuel Processor for Hydrogen Production From Ethanol in a 250 Wel Fuel Cell System
,”
Int. J. Hydrogen Energy
,
34
, pp.
8006
8015
.10.1016/j.ijhydene.2009.07.064
17.
Pan
,
L.
, and
Wang
,
S.
,
2005
, “
Modeling of a Compact Plate-Fin Reformer for Methanol Steam Reforming in Fuel Cell Systems
,”
Chem. Eng. J.
,
108
, pp.
51
58
.10.1016/j.cej.2004.12.042
18.
Olah
,
G. A.
,
Goeppert
,
A.
, and
Prakash
,
G. K. S.
,
2009
,
Beyond Oil and Gas: The Methanol Economy
, 2nd ed.,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
19.
Delsman
,
E. R.
,
Uju
,
C. U.
,
Croon
,
M. H. J. M. D.
,
Schouten
,
J. C.
, and
Ptasinski
,
K. J.
,
2006
, “
Exergy Analysis of An Integrated Fuel Processor and Fuel Cell (FP–FC) System
,”
Energy
,
31
, pp.
3300
3309
.10.1016/j.energy.2006.03.011
20.
Spath
,
P. L.
, and
Dayton
,
D. C.
,
2003
, “
Preliminary Screening-Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals With Emphasis on the Potential for Biomass-Derived Syngas
,” Report No. NREL/TP–510–34929, National Renewable Energy Laboratory, Golden, CO.
21.
Brown
,
L. F.
,
2001
, “
A Comparative Study of Fuels for On-Board Hydrogen Production for Fuel-Cell-Powered Automobiles
,”
Int. J. Hydrogen Energy
,
26
, pp.
381
397
.10.1016/S0360-3199(00)00092-6
22.
Horng
,
R.-F.
,
Huang
,
H.-H.
,
Lai
,
M.-P.
,
Wen
,
C.-S.
, and
Chiu
,
W.-C.
,
2008
, “
Characteristics of Hydrogen Production by a Plasma–Catalyst Hybrid Converter With Energy Saving Schemes Under Atmospheric Pressure
,”
Int. J. Hydrogen Energy
,
33
, pp.
3719
3727
.10.1016/j.ijhydene.2008.04.045
23.
Horng
,
R.-F.
,
Lai
,
M.-P.
,
Huang
,
H.-H.
, and
Chang
,
Y.-P.
,
2009
, “
Reforming Performance of a Plasma-Catalyst Hybrid Converter Using Low Carbon Fuels
,”
Energy Convers. Manag.
,
50
, pp.
2632
2637
.10.1016/j.enconman.2009.06.013
24.
Cipití
,
F.
,
Pino
,
L.
,
Vita
,
A.
,
Laganá
,
M.
, and
Recupero
, V
.
,
2008
, “
Performance of a 5 kWe Fuel Processor for Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
33
, pp.
3197
3203
.10.1016/j.ijhydene.2008.02.042
25.
Caló
,
E.
,
Giannini
,
A.
, and
Monteleone
,
G.
,
2010
, “
Small Stationary Reformers for H2 Production From Hydrocarbons
,”
Int. J. Hydrogen Energy
,
35
, pp.
9828
9835
.10.1016/j.ijhydene.2010.03.067
26.
Hwang
,
J. J.
,
Chang
,
W. R.
,
Weng
,
F. B.
,
Su
,
A.
, and
Chen
,
C. K.
,
2008
, “
Development of a Small Vehicular PEM Fuel Cell System
,”
Int. J. Hydrogen Energy
,
32
, pp.
3801
3807
.10.1016/j.ijhydene.2008.04.043
27.
Hwang
,
J. J.
,
Wang
,
D. Y.
, and
Shih
,
N. C.
,
2005
, “
Development of a Lightweight Fuel Cell Vehicle
,”
J. Power Sources
,
141
, pp.
108
115
.10.1016/j.jpowsour.2004.08.056
28.
Hwang
,
J. J.
,
Wang
,
D. Y.
,
Shih
,
N. C.
,
Lai
,
D. Y.
, and
Chen
,
C. K.
,
2004
, “
Development of Fuel-Cell-Powered Electric Bicycle
,”
J. Power Sources
,
133
, pp.
223
228
.10.1016/j.jpowsour.2004.02.004
29.
Sohn
,
Y. J.
,
Park
,
G. G.
,
Yang
,
T. H.
,
Yoon
,
Y. G.
,
Lee
,
W. Y.
,
Yim
,
S. D.
, and
Kim
,
C. S.
,
2005
, “
Operating Characteristics of An Air-Cooling PEMFC for Portable Applications
,”
J. Power Sources
,
145
(
2
), pp.
604
609
.10.1016/j.jpowsour.2005.02.062
30.
Wee
,
J.-H.
,
2007
, “
Applications of Proton Exchange Membrane Fuel Cell Systems
,”
Renew. Sustain. Energy Rev.
,
11
, pp.
1720
1738
.10.1016/j.rser.2006.01.005
31.
Pan
,
C.
,
He
,
R.
,
Li
,
Q.
,
Jensen
,
J. O.
,
Bjerrum
,
N. J.
,
Hjulmand
,
H. A.
, and
Jensen
,
A. B.
,
2005
, “
Integration of High Temperature PEM Fuel Cells With a Methanol Reformer
,”
J. Power Sources
,
145
, pp.
392
398
.10.1016/j.jpowsour.2005.02.056
32.
Yan
,
X.
,
Wang
,
S.
,
Li
,
X.
,
Hou
,
M.
,
Yuan
,
Z.
,
Li
,
D.
,
Pan
,
L.
,
Zhang
,
C.
,
Liu
,
J.
,
Ming
,
P.
, and
Yi
,
B.
,
2006
, “
A 75-kW Methanol Reforming Fuel Cell System
,”
J. Power Sources
,
162
, pp.
1265
1269
.10.1016/j.jpowsour.2006.07.037
33.
Gigliucci
,
G.
,
Petruzzi
,
L.
,
Cerelli
,
E.
,
Garzisi
,
A.
, and
Mendola
,
A. L.
,
2004
, “
Demonstration of a Residential CHP System Based on PEM Fuel Cells
,”
J. Power Sources
,
131
, pp.
62
68
.10.1016/j.jpowsour.2004.01.010
34.
Barelli
,
L.
,
Bidini
,
G.
,
Gallorini
,
F.
, and
Ottaviano
,
A.
,
2011
, “
An Energetic–Exergetic Analysis of a Residential CHP System Based on PEM Fuel Cell
,”
Appl. Energy
,
88
, pp.
4334
4342
.10.1016/j.apenergy.2011.04.059
35.
Hubert
,
C.-E.
,
Achard
,
P.
, and
Metkemeijer
,
R.
,
2006
, “
Study of a Small Heat and Power PEM Fuel Cell System Generator
,”
J. Power Sources
,
156
, pp.
64
70
.10.1016/j.jpowsour.2005.08.022
36.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Evaluation of Various Thermal Management Strategies for Polymer Electrolyte Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
36
, pp.
12991
13007
.10.1016/j.ijhydene.2011.07.028
37.
López-Sabirón
,
A. M.
,
Barroso
,
J.
,
Roda
, V
.
,
Barranco
,
J.
,
Lozano
,
A.
, and
Barreras
,
F. L.
,
2012
, “
Design and Development of the Cooling System of a 2 kW Nominal Power Open-Cathode Polymer Electrolyte Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
37
, pp.
7289
7298
.10.1016/j.ijhydene.2011.11.073
38.
Wee
,
J.-H.
, and
Lee
,
K.-Y.
,
2006
, “
Overview of the Development of CO-Tolerant Anode Electrocatalysts for Proton-Exchange Membrane Fuel Cells
,”
J. Power Sources
,
157
, pp.
128
135
.10.1016/j.jpowsour.2005.08.010
39.
Oetjen
,
H.-F.
,
Schmidt
, V
. M.
,
Stimming
,
U.
, and
Trila
,
F.
,
1996
, “
Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas
,”
J. Electrochem. Soc.
,
143
, pp.
3838
3842
.10.1149/1.1837305
40.
Chung
,
C.-C.
,
Chen
,
C.-H.
, and
Weng
,
D.-Z.
,
2009
, “
Development of an Air Bleeding Technique and Specific Duration to Improve the CO Tolerance of Proton-Exchange Membrane Fuel Cells
,”
Appl. Therm. Eng.
,
29
, pp.
2518
2526
.10.1016/j.applthermaleng.2008.12.021
41.
Horng
,
R.-F.
,
Chou
,
H.-M.
,
Lee
,
C.-H.
, and
Tsai
,
H.-T.
,
2006
, “
Characteristics of Hydrogen Produced by Partial Oxidation and Auto-Thermal Reforming in a Small Methanol Reformer
,”
J. Power Sources
,
161
, pp.
1225
1233
.10.1016/j.jpowsour.2006.06.043
42.
Huang
,
T.-J.
, and
Chen
,
H-M.
,
2010
, “
Hydrogen Production Via Steam Reforming of Methanol Over Cu/(Ce,Gd)O2-X Catalysts
,”
Int. J. Hydrogen Energy
,
35
, pp.
6218
6226
.10.1016/j.ijhydene.2010.03.082
43.
Mu
,
L.
,
Cheng
,
W.
,
Zhi-Xiang
,
L.
, and
Zong-Qiang
,
M.
,
2012
, “
The Development and Performance Analysis of All-China-Made PEM Fuel Cell Unit and 1 kW Level Fuel Cell Stack
,”
Int. J. Hydrogen Energy
,
37
, pp.
1106
1111
.10.1016/j.ijhydene.2011.02.080
44.
Giddey
,
S.
,
Ciacchi
,
F. T.
, and
Badwal
,
S. P. S.
,
2004
, “
Design, Assembly and Operation of Polymer Electrolyte Membrane Fuel Cell Stacks to 1 kWe Capacity
,”
J. Power Sources
,
125
, pp.
155
165
.10.1016/j.jpowsour.2003.08.026
45.
Rodatz
,
P.
,
Büchi
,
F.
,
Onder
,
C.
, and
Guzzella
,
L.
,
2004
, “
Operational Aspects of a Large PEFC Stack Under Practical Conditions
,”
J. Power Sources
,
128
, pp.
208
217
.10.1016/j.jpowsour.2003.09.060
46.
Zhu
,
W. H.
,
Payne
,
R. U.
,
Cahela
,
D. R.
, and
Tatarchuk
,
B. J.
,
2004
, “
Uniformity Analysis at MEA and Stack Levels for a Nexa PEM Fuel Cell System
,”
J. Power Sources
,
128
, pp.
231
238
.10.1016/j.jpowsour.2003.09.074
47.
Wu
,
J.
,
Galli
,
S.
,
Lagana
, I
.
,
Pozio
,
A.
,
Monteleone
,
G.
,
Yuan
,
X. Z.
,
Martin
,
J.
, and
Wang
,
H.
,
2009
, “
An Air-Cooled Proton Exchange Membrane Fuel Cell With Combined Oxidant and Coolant Flow
,”
J. Power Sources
,
188
, pp.
199
204
.10.1016/j.jpowsour.2008.11.078
48.
Zhang
,
G.
, and
Kandlikar
,
S. G.
,
2012
, “
A Critical Review of Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
37
, pp.
2412
2429
.10.1016/j.ijhydene.2011.11.010
49.
Yan
,
X.
,
Hou
,
M.
,
Sun
,
L.
,
Cheng
,
H.
,
Hong
,
Y.
,
Liang
,
D.
,
Shen
,
Q.
,
Ming
,
P.
, and
Yi
,
B.
,
2007
, “
The Study on Transient Characteristic of Proton Exchange Membrane Fuel Cell Stack During Dynamic Loading
,”
J. Power Sources
,
163
, pp.
966
970
.10.1016/j.jpowsour.2006.09.075
50.
Chen
,
C.-Y.
, and
Lai
,
W.-H.
,
2010
, “
Effects of Temperature and Humidity on the Cell Performance and Resistance of a Phosphoric Acid Doped Polybenzimidazole Fuel Cell
,”
J. Power Sources
,
195
, pp.
7152
7159
.10.1016/j.jpowsour.2010.05.057
51.
Freire
,
T. J. P.
, and
Gonzalez
,
E. R.
,
2001
, “
Effect of Membrane Characteristics and Humidification Conditions on the Impedance Response of Polymer Electrolyte Fuel Cells
,”
J. Electroanal. Chem.
,
503
, pp.
57
68
.10.1016/S0022-0728(01)00364-3
52.
Kurz
,
T.
,
Hakenjos
,
A.
,
Krämer
,
J. R. M.
,
Zedda
,
M.
, and
Agert
,
C.
,
2008
, “
An Impedance-Based Predictive Control Strategy for the State-of-Health of PEM Fuel Cell Stacks
,”
J. Power Sources
,
180
, pp.
742
747
.10.1016/j.jpowsour.2008.02.062
53.
Weng
,
F.-B.
,
Jou
,
B.-S.
,
Su
,
A.
,
Chan
,
S. H.
, and
Chi
,
P.-H.
,
2007
, “
Design, Fabrication and Performance Analysis of a 200W PEM Fuel Cell Short Stack
,”
J. Power Sources
,
171
, pp.
179
185
.10.1016/j.jpowsour.2006.12.061
54.
Chen
,
J.
, and
Zhou
,
B.
,
2008
, “
Diagnosis of PEM Fuel Cell Stack Dynamic Behaviors
,”
J. Power Sources
,
177
, pp.
83
95
.10.1016/j.jpowsour.2007.11.038
You do not currently have access to this content.