A high performance multi-input multi-output feedback controller has been developed to minimize solid oxide fuel cell (SOFC) spatial temperature variation during load following. Cathode flow rate and its inlet temperature are used to minimize spatial temperature variations in the SOFC electrode electrolyte assembly for significant load perturbations. We focus on control design in the presence of nonideal actuation. This includes the effects of fuel processing delays, cathode inlet thermal delays, and parasitic power associated with the blower supplying air to the cathode. The controller, based on energy-to-peak minimization synthesis, is applied to a dynamic model of an anode-supported coflow planar SOFC stack. The results indicate that many of the problems associated with realistic and imperfect actuation can be addressed with relatively standard control synthesis modifications, but fuel flow delays can compromise power following significantly. Finally, a strategy that relies primarily on partial internal reformation for power following addresses many of the difficulties associated with reformer delays.

References

References
1.
Williams
,
M. C.
,
Strakey
,
J. P.
,
Surdoval
,
W. A.
, and
Wilson
,
L. C.
,
2006
, “
Solid Oxide Fuel Cell Technology Development in the U.S.
,”
Solid State Ionics.
177
(
19–25
), pp.
2039
2044
.10.1016/j.ssi.2006.02.051
2.
Mueller
,
F.
,
Jabbari
,
F.
,
Gaynor
,
R.
, and
Brouwer
,
J.
,
2007
, “
Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,”
J. Power. Source.
,
172
(
1
) pp.
308
323
.10.1016/j.jpowsour.2007.05.092
3.
Mueller
,
F.
,
Gaynor
,
R.
,
Auld
,
A. E.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
,
2008
, “
Synergistic Integration of a Gas Turbine and Solid Oxide Fuel Cell for Improved Transient Capability
,”
J. Power. Source.
,
176
(
1
), pp.
229
239
.10.1016/j.jpowsour.2007.10.081
4.
Mueller
,
F.
,
2009
, “
On the Intrinsic Transient Capability and Limitations of Solid Oxide Fuel Cell Systems
,”
J. Power. Source.
,
187
(
2
), pp.
452
460
.10.1016/j.jpowsour.2008.11.057
5.
Mueller
,
F.
,
Tarroja
,
B.
,
Maclay
,
J.
,
Jabbari
,
F.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2008
, “
Design, Simulation and Control of a 100 Megawatt Class Solid Oxide Fuel Cell Gas Turbine Hybrid System
,” ASME 6th International Conference on Fuel Cell Science, Engineering and Technology Denver, CO, June 16–18,
ASME
Paper No. FuelCell2008-65194, pp. 701–714.10.1115/FuelCell2008-65194
6.
Mueller
,
F.
,
2008
, “
The Dynamics and Control of Integrated Solid Oxide Fuel Cell Systems: Transient Load-Following and Fuel Disturbance Rejection
,” Ph.D. thesis,
University of California
,
Irvine, CA
.
7.
Murshed
,
A. M.
,
Huang
,
B.
, and
Nandakumar
,
K.
,
2010
, “
Estimation and Control of Solid Oxide Fuel Cell System
,”
Comput. Chem. Eng.
,
34
(
1
), pp.
96
111
.10.1016/j.compchemeng.2009.06.018
8.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
,
2009
, “
A Transient Analysis of a Micro-Tubular Solid Oxide Fuel Cell (SOFC)
,”
J. Power. Source.
,
194
(
2
), pp.
864
872
.10.1016/j.jpowsour.2009.06.036
9.
Nakajo
,
A.
,
Stiller
,
C.
,
Harkegard
,
G.
, and
Bolland
,
O.
,
2006
, “
Modeling of Thermal Stresses and Probability of Survival of Tubular SOFC
,”
J. Power. Source.
,
158
(
1
), pp.
287
294
.10.1016/j.jpowsour.2005.09.004
10.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van Herle
,
J.
, and
Favrat
,
D.
,
2009
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks Part I: Probability of Failure of the Cells
,”
J. Power. Source.
,
193
(
1
), pp.
203
215
.10.1016/j.jpowsour.2008.12.050
11.
Hsiao
,
Y. C.
, and
Selman
,
J. R.
,
1997
, “
The Degradation of SOFC Electrodes
,”
Solid State Ionics
,
98
(
1–2
), pp.
33
38
.10.1016/S0167-2738(97)00106-9
12.
Nakajo
,
A.
,
Tanasini
,
P.
,
Diethelm
,
S.
,
Herle
,
J. V.
,
Favrat
,
D.
,
2011
, “
Electrochemical Model of Solid Oxide Fuel Cell for Simulation at the Stack Scale II: Implementation of Degradation Processes
,”
J. Electrochem. Soc.
,
158
(
9
), pp.
B1102
B1118
.10.1149/1.3596435
13.
Mueller
,
F.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Roberts
,
R.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
,
2007
, “
Control Design for A Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Tech.
,
4
, pp.
221
230
.10.1115/1.2713785
14.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
,
2006
, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power. Source.
,
158
(
1
), pp.
303
315
.10.1016/j.jpowsour.2005.09.010
15.
Tsai
,
A.
,
Banta
,
L.
,
Tucker
,
D.
, and
Gemmen
,
R.
,
2010
, “
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
,”
ASME J. Fuel Cell Sci. Tech.
,
7
(
4
), p.
041008
.10.1115/1.4000628
16.
Gaynor
,
R.
,
Mueller
,
F.
,
Jabbari
,
F.
, and
Brouwer
,
J.
,
2008
, “
On Control Concepts to Prevent Fuel Starvation in Solid Oxide Fuel Cells
,”
J. Power. Source.
,
180
(
1
), pp.
330
342
.10.1016/j.jpowsour.2008.01.078
17.
Fardadi
,
M.
,
Mueller
,
F.
, and
Jabbari
,
F.
,
2010
, “
Feedback Control of Solid Oxide Fuel Cell Spatial Temperature Variation
,”
J. Power. Source.
,
195
(
13
), pp.
4222
4233
.10.1016/j.jpowsour.2009.12.111
18.
Roberts
,
R.
,
Brouwer
,
J.
,
Jabbari
,
F.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
,
2006
, “
Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System: Variable Versus Fixed Speed Gas Turbine Operation
,”
J. Power. Source.
,
161
(
1
), pp.
484
491
.10.1016/j.jpowsour.2006.03.059
19.
Kuniba
,
Y.
,
2007
, “
Development and Analysis of Load Following SOFC/GT Hybrid System Control Strategies for Commercial Building Applications
,” M.S. thesis,
University of California
,
Irvine, CA
.
20.
Kaneko
,
T.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2006
, “
Power and Temperature Control of Fluctuating Biomass Gas Fueled Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System
,”
J. Power. Source.
,
160
(
1
), pp.
316
325
.10.1016/j.jpowsour.2006.01.044
21.
Brouwer
,
J.
,
Jabbari
,
F.
,
Leal
,
E. M.
, and
Orr
,
T.
,
2006
, “
Analysis of a Molten Carbonate Fuel Cell: Numerical Modeling and Experimental Validation
,”
J. Power. Source.
,
158
(
1
), pp.
213
224
.10.1016/j.jpowsour.2005.07.093
22.
Min
,
K.
,
Brouwer
,
J.
,
Auckland
,
J.
,
Mueller
,
F.
, and
Samuelsen
,
S.
,
2006
, “
Dynamic Simulation of a Stationary PEM Fuel Cell System
,” ASME 4th International Conference on Fuel Cell Science, Engineering and Technology, Irvine, CA, June 19–21,
ASME
Paper No. FUELCELL2006-97039, pp. 853–861.10.1115/FUELCELL2006-97039
23.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
,
2005
, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Control
,” ASME 3rd International Conference on Fuel Cell Science, Engineering and Technology, Ypsilanti, MI, May 23–25,
ASME
Paper No. FUELCELL2005-74107, pp. 413–422.10.1115/FUELCELL2005-74107
24.
Mueller
,
F.
,
Brouwer
,
J.
,
Kang
,
S.
,
Kim
,
H.-S.
, and
Min
,
K.
,
2007
, “
Quasi-Three Dimensional Dynamic Model of a Proton Exchange Membrane Fuel Cell for System and Controls Development
,”
J. Power. Source.
,
163
(
2
), pp.
814
829
.10.1016/j.jpowsour.2006.09.089
25.
Roberts
,
R.
,
2005
, “
A Dynamic Fuel Cell-Gas Turbine Hybrid Simulation Methodology to Establish Control Strategies and an Improved Balance of Plant
,” Ph.D. thesis,
University of California
,
Irvine, CA
.
26.
Roberts
,
R.
, and
Brouwer
,
J.
,
2006
, “
Dynamic Simulation of a Pressurized 220 kW Solid Oxide Fuel-Cell-Gas-Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
ASME J. Fuel Cell Sci. Tech.
,
3
(
1
), pp.
18
25
.10.1115/1.2133802
27.
Shaffer
,
B.
, and
Brouwer
,
J.
,
2012
, “
Dynamic Model for Understanding Spatial Temperature and Species Distributions in Internal-Reforming Solid Oxide Fuel Cells
,”
ASME J. Fuel Cell Sci. Tech.
,
9
(
4
), p.
041012
.10.1115/1.4006477
28.
Achenbach
,
E.
, and
Riensche
E.
,
1994
, “
Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells
,”
J. Power. Source.
,
52
, pp.
283
288
.10.1016/0378-7753(94)02146-5
29.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
,
2006
, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Tech.
,
3
(
2
), pp.
144
155
.10.1115/1.2174063
30.
Mogensen
,
D.
,
Grunwaldt
,
J.-D.
,
Hendriksen
,
P. V.
,
Dam-Johansen
,
K.
, and
Nielsen
,
J. U.
,
2011
, “
Internal Steam Reforming in Solid Oxide Fuel Cells: Status and Opportunities of Kinetic Studies and Their Impact on Modelling
,”
J. Power. Source.
,
196
(
1
), pp.
25
38
.10.1016/j.jpowsour.2010.06.091
31.
Peters
,
R.
,
Riensche
,
E.
, and
Cremer
,
P.
,
2000
, “
Pre-Reforming of Natural Gas in Solid Oxide Fuel-Cell Systems
,”
J. Power. Source.
,
86
(
1–2
), pp.
432
441
.10.1016/S0378-7753(99)00440-1
32.
Sánchez
,
D.
,
Chacartegui
,
R.
,
Muñoz
,
A.
, and
Sánchez
,
T.
,
2008
, “
On the Effect of Methane Internal Reforming Modeling in Solid Oxide Fuel Cells
,”
Int. J. Hydr. Energ.
,
33
(
7
), pp.
1834
1844
.10.1016/j.ijhydene.2008.01.024
33.
Pukrushpan
,
T. J.
,
Stefanopoulou
,
G. A.
, and
Huei
,
P.
,
2005
,
J. M.
Grimble
, and
A. M.
Johnson
, eds.,
Control of Fuel Cell Power Systems: Principles, Modeling, Analysis, and Feedback Design
,
Springer
,
London
, Chap. 3.
34.
Mueller
,
F.
,
2005
, “
Design and Simulation of a Tubular Solid Oxide Fuel Cell System Control Strategy
,” Master's thesis,
University of California
,
Irvine, CA
.
35.
Williams
,
M. C.
,
Strakey
,
J.
, and
Sudoval
,
W.
,
2006
, “
U.S. DOE Fossil Energy Fuel Cells Program
,”
J. Power. Source.
,
159
, pp.
1241
1247
.10.1016/j.jpowsour.2005.12.085
36.
Khaleel
,
M. A.
,
Koeppel
,
B. J.
,
Liu
,
W.
,
Lai
,
K.
,
Recknagle
,
K. P.
,
Ryan
,
E. M.
,
Stephens
,
E. V.
, and
Sun
,
X.
,
2009
, “
Modeling Tools for Solid Oxide Fuel Cell Design and Analysis
,”
11th Annual SECA Workshop
,
Pittsburgh, PA
, July 27–29.
37.
Zhou
,
K.
, and
Doyle
,
J. C.
,
1998
,
Essentials of Robust Control
,
Prentice-Hall
, Upper Saddle River, NJ.
38.
Boyd
,
S.
,
Ghaoui
,
L. E.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
, Prentice-Hall, Upper Saddle River, NJ.
39.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2005
, “
Anode-Supported Intermediate-Temperature Direct Internal Reforming Solid Oxide Fuel Cell: II. Model-Based Dynamic Performance and Control
,”
J. Power. Source.
,
147
, pp.
136
147
.10.1016/j.jpowsour.2005.01.017
40.
Scherer
,
C.
,
Gahinet
,
P.
, and
Chilali
,
M.
,
1997
, “
Multiobjective Output-Feedback Control Via LMI Optimization
,”
IEEE Trans. Auto. Contr.
,
42
(
7
), pp.
896
911
.10.1109/9.599969
41.
Skelton
,
R. E.
,
Iwaskai
,
T.
, and
Grigoriadis
,
K.
,
1998
,
A Unified Algebraic Approach to Linear Control Design
,
Taylor and Francis
,
London
.
42.
Gahinet
,
P.
,
Nemirovski
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
,
1995
,
LMI Control Toolbox for Use With Matlab
,
The MathWorks, Inc.
, Beltsville, MD.
43.
Liptak
,
B. G.
,
1995
,
Instrument Engineers' Handbook: Process Control
, 3rd ed., Chilton Book Company, Radnor, PA.
44.
Xu
,
J.
, and
Froment
,
F. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics
,”
AIChE J.
,
35
(
1
), pp.
88
96
.10.1002/aic.690350109
45.
Xu
,
J.
, and
Froment
,
F. F.
,
1989
, “
Methane Steam Reforming: II. Diffusional Limitations and Reactor Simulation
,”
AIChE J.
,
35
(
1
), pp.
97
103
.10.1002/aic.690350110
46.
Beckhaus
,
P.
,
Heinzel
,
A.
,
Mathiak
,
J.
, and
Roes
,
J.
,
2004
, “
Dynamics of H2 Production by Steam Reforming
,”
J. Power. Source.
,
127
(
1–2
), pp.
294
299
.10.1016/j.jpowsour.2003.09.026
47.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power. Source.
,
138
(
1–2
), pp.
120
136
.10.1016/j.jpowsour.2004.06.040
48.
Meusinger
,
J.
,
Riensche
,
E.
, and
Stimming
,
U.
,
1998
, “
Reforming of Natural Gas in Solid Oxide Fuel Cell Systems
,”
J. Power. Source.
,
71
(
1–2
), pp.
315
320
.10.1016/S0378-7753(97)02763-8
49.
Inui
,
Y.
,
Ito
,
N.
,
Nakajima
,
T.
, and
Urata
,
A.
,
2006
, “Analytical Investigation on Cell Temperature Control Method of Planar Solid Oxide Fuel Cell,”
Energ. Conv. Manage.
,
47
(
15–16
), pp.
2319
2328
.10.1016/j.enconman.2005.11.007
50.
Ferrari
,
M. L.
,
Magistri
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2005
, “
Control System for Solid Oxide Fuel Cell Hybrid Systems
,” ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, June 6–9,
ASME
Paper No. GT2005-68102, pp. 55–63.10.1115/GT2005-68102
51.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2005
, “
Influence of the Anodic Recirculation Transient Behaviour on the SOFC Hybrid System Performance
,”
J. Power. Source.
,
149
, pp.
22
32
.10.1016/j.jpowsour.2005.01.059
52.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
,
2006
, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Tech.
,
3
, pp.
144
154
(
2006
).10.1115/1.2174063
53.
Mueller
,
F.
,
2005
, “
Design and Simulation of a Tubular Solid Oxide Fuel Cell System Control Strategy
,” Masters thesis,
University of California
,
Irvine, CA
, p.
141
.
54.
Zhu
,
Y.
, and
Tomsovic
,
K.
,
2002
, “
Development of Models for Analyzing the Load-Following Performance of Microturbines and Fuel Cells
,”
Elec. Power Sys. Res.
,
62
(
1
), pp.
1
11
.10.1016/S0378-7796(02)00033-0
55.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
,
2007
, “
Modeling and Control of a SOFC-GT-Based Autonomous Power System
,”
Energy
,
32
(
4
), pp.
406
417
.10.1016/j.energy.2006.07.034
You do not currently have access to this content.