In this paper, an effective combined finite element-upwind finite volume method is studied for a three-dimensional transient multiphysics transport model of a proton exchange membrane fuel cell (PEMFC), in which Navier–Stokes–Darcy coupling flow, species transports, heat transfer, electrochemical processes, and charge transports are fully considered. Multiphase mixture (M2) formulation is employed to define the involved two-phase model. Kirchhoff transformation is introduced to overcome the discontinuous and degenerate water diffusivity that is induced by the M2 model. By means of an adaptive time-stepping fourth-order multistep backward differencing formula (BDF), we design an effective temporal integration scheme to deal with the stiff phenomena arising from different time scales. In addition, all the governing equations are discretized by a combined finite element-upwind finite volume method to conquer the dominant convection effect in gas channels, while the diffusion and reaction effects are still dealt with by finite element method. Numerical simulations demonstrate that the presented techniques are effective to obtain a fast and convergent nonlinear iteration within a maximum 36 steps at each time step; in contrast to the oscillatory and nonconvergent iteration conducted by commercial CFD solvers and standard finite element/finite volume methods.

References

References
1.
Wang
,
Y.
, and
Wang
,
C. Y.
,
2007
, “
Two-Phase Transients of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc
,
154
, pp.
B636
B643
.10.1149/1.2734076
2.
Wang
,
Y.
, and
Wang
,
C. Y.
,
2005
, “
Transient Analysis of Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
50
, pp.
1307
1315
.10.1016/j.electacta.2004.08.022
3.
Wang
,
Y.
, and
Wang
,
C. Y.
,
2006
, “
Dynamics of Polymer Electrolyte Fuel Cells Undergoing Load Changes
,”
Electrochim. Acta
,
51
, pp.
3924
3933
.10.1016/j.electacta.2005.11.005
4.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1997
, “
Multiphase Flow and Heat Transfer in Porous Media
,”
Adv. Heat Transfer
,
30
, pp.
93
196
.10.1016/S0065-2717(08)70251-X
5.
Wang
,
C. Y.
,
2004
, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
,
104
, pp.
4727
4766
.10.1021/cr020718s
6.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
,
2004
, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
, pp.
A399
A406
.10.1149/1.1646148
7.
Wang
,
Z. H.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2001
, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
94
, pp.
40
50
.10.1016/S0378-7753(00)00662-5
8.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
,
2005
, “
Two-Phase Modeling and Flooding Prediction of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
152
,
A380
A390
.10.1149/1.1850339
9.
Liu
,
F. Q.
, and
Wang
,
C. Y.
,
2007
, “
Mixed Potential in a Direct Methanol Fuel Cell—Modeling and Experiments
,”
J. Electrochem. Soc.
,
154
, pp.
B514
B522
.10.1149/1.2718404
10.
Liu
,
W.
, and
Wang
,
C. Y.
,
2007
, “
Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
154
, pp.
B352
B361
.10.1149/1.2429041
11.
Liu
,
W.
, and
Wang
,
C. Y.
,
2007
, “
Modeling Water Transport in Liquid Feed Direct Methanol Fuel Cells
,”
J. Power Sources
,
164
, pp.
189
195
.10.1016/j.jpowsour.2006.10.047
12.
Sun
,
P.
,
Xue
,
G.
,
Wang
,
C.-Y.
, and
Xu
,
J.
,
2009
, “
Fast Numerical Simulation of Two-Phase Transport Model in the Cathode of a Polymer Electrolyte Fuel Cell
,”
Commun. Comput. Phys.
,
6
, pp.
49
71
.10.4208/cicp.2009.v6.p49
13.
Sun
,
P.
,
Xue
,
G.
,
Wang
,
C.-Y.
, and
Xu
,
J.
,
2009
, “
A Domain Decomposition Method for Two-Phase Transport Model in the Cathode of a Polymer Electrolyte Fuel Cell
,”
J. Comput. Phys.
,
228
, pp.
6016
6036
.10.1016/j.jcp.2009.05.008
14.
Sun
,
P.
, and
Wang
,
Y.
,
2010
, “
A New Formulation and an Efficient Numerical Technique for a Nonisothermal, Anisotropic, Two-Phase Transport Model of PEMFC
,”
Proceedings of the Eighth International Fuel Cell Science, Engineering and Technology Conference
,
Brooklyn, NY
,
June 14–16
.
15.
Sun
,
P.
,
Zhou
,
S.
,
Hu
,
Q.
, and
Liang
,
G.
,
2012
, “
Numerical Study of a 3D Two-Phase PEM Fuel Cell Model Via a Novel Automated Finite Element/Finite Volume Program
,”
Commun. Comput. Phys.
,
11
, pp.
65
98
.10.4208/cicp.051010.180311a
16.
Mattheij
,
R. M.,
Reinstra, S. W., and ten Thije Boonkkamp, J. H. M.,
2005
,
Partial Differential Equations: Modeling, Analysis, Computation
,
SIAM
, Philadelphia.
17.
Shampine
,
L. F.
, and
Gear
,
C. W.
,
1979
, “
A User's View of Solving Stiff Ordinary Differential Equations
,”
SIAM Rev.
,
21
, pp.
1
17
.10.1137/1021001
18.
Li
,
M.
, and
Tang
,
T.
,
2001
, “
A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows
,”
J. Sci. Comput.
,
16
, pp.
29
45
.10.1023/A:1011146429794
19.
Strikwerda
,
J. C.
,
1997
, “
High-Order-Accurate Schemes for Incompressible Viscous Flow
,”
Int. J. Numer. Meth. Fluids
,
24
, pp.
715
734
.10.1002/(SICI)1097-0363(19970415)24:7<715::AID-FLD513>3.0.CO;2-E
20.
Wang
,
Y.
,
2008
, “
Modeling of Two-Phase Transport in the Diffusion Media of Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
185
, pp.
261
271
.10.1016/j.jpowsour.2008.07.007
21.
Wang
,
Y.
, and
Wang
,
C. Y.
,
2006
, “
A Nonisothermal Two-Phase Model for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc
,
153
, pp.
A1193
A1200
.10.1149/1.2193403
22.
Pasaogullari
,
U.
,
Mukherjee
,
P.
,
Wang
,
C. Y.
, and
Chen
,
K.
,
2007
, “
Anisotropic Heat and Water Transport in a PEFC Cathode Gas Diffusion Layer
,”
J. Electrochem. Soc.
,
154
, pp.
B823
B834
.10.1149/1.2745714
23.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1996
, “
A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous Media—I. Model Development
,”
Int. J. Heat Mass Transfer
,
39
, pp.
3607
3618
.10.1016/0017-9310(96)00036-1
24.
Sun
,
P.
,
2011
, “
Modeling Studies and Efficient Numerical Methods for Proton Exchange Membrane Fuel Cell
,”
Comput. Methods Appl. Mech. Eng.
,
200
, pp.
3324
3340
.10.1016/j.cma.2011.08.007
25.
Kulikovsky
,
A. A.
,
2003
, “
Quasi-3D Modeling of Water Transport in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
150
, pp.
A1432
A1439
.10.1149/1.1611489
26.
Crank
,
J.
,
1984
,
Free and Moving Boundary Problems
,
Clarendon
,
New York
.
27.
Eyres
,
N.
,
Hartree
,
D.
,
Ingham
,
J.
,
Jackson
,
R.
,
Sarjant
,
R.
, and
Wagstaff
,
S.
,
1946
, “
The Calculation of Variable Heat Flow in Solids
,”
Philos. Trans. R. Soc. London Sect. A
,
240
, pp.
1
57
.10.1098/rsta.1946.0002
28.
Alt
,
H.
, and
Luckhaus
,
S.
,
1983
, “
Quasilinear Elliptic-Parabolic Differential Equations
,”
Math. Z.
,
183
, pp.
311
341
.10.1007/BF01176474
29.
Arbogast
,
T.
,
Wheeler
,
M.
, and
Zhang
,
N.
,
1996
, “
A Nonlinear Mixed Finite Element Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media
,”
SIAM J. Numer. Anal.
,
33
, pp.
1669
1687
.10.1137/S0036142994266728
30.
Rose
,
M.
,
1983
, “
Numerical Methods for Flows Through Porous Media. {I}
,”
Math. Comp.
,
40
, pp.
435
467
.10.1090/S0025-5718-1983-0689465-6
31.
Sun
,
P.
,
Xue
,
G.
,
Wang
,
C.-Y.
, and
Xu
,
J.
,
2009
, “
New Numerical Techniques for a Liquid Feed 3D Full Direct Methanol Fuel Cell Model
,”
SIAM Appl. Math.
,
70
, pp.
600
620
.10.1137/08071942X
32.
Sun
,
P.
,
Wang
,
C.
, and
Xu
,
J.
,
2010
, “
A Combined Finite Element-Upwind Finite Volume Method for Liquid-Feed Direct Methanol Fuel Cell Simulations
,”
J. Fuel Cell Sci. Tech.
,
7
, p.
041010
.10.1115/1.4000630
33.
Feistauer
,
M.
,
Felcman
,
J.
,
Lukáčová-Medvid'Ová
,
M.
, and
Warnecke
,
G.
,
1999
, “
Error Estimates for a Combined Finite Volume-Finite Element Method for Nonlinear Convection-Diffusion Problems
,”
SIAM J. Numer. Anal.
,
36
, pp.
1528
1548
.10.1137/S0036142997314695
34.
Sun
,
P.
, and
Zhou
,
S.
,
2011
, “
Numerical Studies of Thermal Transport and Mechanical Effects Due to Thermal-Inertia Loading in PEMFC Stack in Sub-Freezing Environment
,”
J. Fuel Cell Sci. Tech.
,
8
, p.
011010
.10.1115/1.4001021
35.
Tezduyar
,
T. E.
,
1992
, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
,
28
, pp.
1
44
.10.1016/S0065-2156(08)70153-4
36.
Brezzi
,
F.
, and
Pitkaranta
,
J.
,
1984
, “
On the Stabilization of Finite Element Approximations of the Stokes Problem
,”
Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid Mechanics, Vol. 10, W. Hackbusch, ed., Viewig
, Wiesbaden, Germany, pp.
11
19
.
37.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Balestra
,
M.
,
1986
, “
A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babuška-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-Order Interpolations
,”
Comput. Meth. Appl. Mech. Eng.
,
59
(1), pp.
85
99
.10.1016/0045-7825(86)90025-3
You do not currently have access to this content.