Knowledge of the distributions of various properties within a proton exchange membrane (PEM) fuel cell is a prerequisite for the improvement of cell performance, stability, and durability. In this paper, statistical tools are employed to investigate the variations of the current density, membrane water content, and local temperature in six flow-field configurations of PEM fuel cells, utilizing a three-dimensional two-phase multicomponent model. Under the same operating conditions, although the polarizations of the cells are similar, the results show that the extent of the uniformity of different physical properties varies in different flow-field configurations. Due to the proper distributions of reactants, the current density, membrane water content, and temperature in channel-perpendicular flow-fields are distributed more uniformly than in channel-overlapping ones. Furthermore, for all flow-field configurations, the three physical properties showed better uniformity in cases with fewer cathodic serpentine channels than in cases with more channels. These results reveal that a uniformity analysis using statistical tools is useful for a comparison of the merits of different configurations of PEM fuel cells.

References

References
1.
Jeon
,
D. H.
,
Greenway
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2008
, “
The Effect of Serpentine Flow-Field Designs on PEM Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
33
, pp.
1052
1066
.10.1016/j.ijhydene.2007.11.015
2.
Wieser
,
Ch.
,
Helmbold
,
A.
, and
Gulzow
,
E.
,
2000
, “
A New Technique for Two-Dimensional Current Distribution Measurements in Electrochemical Cells
,”
J. Appl. Electrochem.
,
30
, pp.
803
807
.10.1023/A:1004047412066
3.
Stumper
,
J.
,
Campbell
,
S. A.
, and
Wilkinson
,
D. P.
,
1998
, “
In-Situ Method for the Determination of Current Distribution in PEM Fuel Cells
,”
Electrochim. Acta
,
43
, pp.
3773
3783
.10.1016/S0013-4686(98)00137-6
4.
Cleghorn
,
S. J.
,
Derouin
,
C. R.
,
Wilson
,
M. S.
, and
Gotterfeld
,
S.
,
1998
, “
A Printed Circuit Board Approach to Measuring Current Distribution in a Fuel Cell
,”
J. Appl. Electrochem.
,
28
, pp.
663
672
.10.1023/A:1003206513954
5.
Geiger
,
A. B.
,
Eckl
,
R.
,
Wokaun
,
A.
, and
Scherer
,
G. G.
,
2004
, “
An Approach to Measuring Locally Resolved Currents in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A394
A398
.10.1149/1.1646147
6.
Noponen
,
M.
,
Mennola
,
T.
,
Mikkola
,
M.
,
Hottinen
,
T.
, and
Lund
,
P.
,
2002
, “
Measurement of Current Distribution in a Free-Breathing PEMFC
,”
J. Power Sources
,
106
, pp.
304
312
.10.1016/S0378-7753(01)01063-1
7.
Mench
,
M. M.
,
Wang
,
C. Y.
, and
Ishikawa
,
M.
,
2003
, “
In Situ Current Distribution Measurements in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
150
, pp.
A1052
A1059
.10.1149/1.1584440
8.
Hakenjos
,
A.
,
Muenter
,
H.
,
Wittstadt
,
U.
, and
Hebling
,
C.
,
2004
, “
A PEM Fuel Cell for Combined Measurement of Current and Temperature Distribution, and Flow Field Flooding
,”
J. Power Sources
,
131
, pp.
213
216
.10.1016/j.jpowsour.2003.11.081
9.
Weng
,
F. B.
,
Jou
,
B. S.
,
Li
,
C. W.
,
Su
,
A.
, and
Chan
,
S. H.
,
2008
, “
The Effect of Low Humidity on the Uniformity and Stability of Segmented PEM Fuel Cells
,”
J. Power Sources
,
181
, pp.
251
258
.10.1016/j.jpowsour.2007.12.078
10.
Sun
,
H.
,
Zhang
,
G. S.
,
Guo
,
L. J.
, and
Liu
,
H. T.
,
2006
, “
A Novel Technique for Measuring Current Distributions in PEM Fuel Cells
,”
J. Power Sources
,
158
, pp.
326
332
.10.1016/j.jpowsour.2005.09.046
11.
Matian
,
M.
,
Marquis
,
A. J.
, and
Brandon
,
N. P.
,
2010
, “
Application of Thermal Imaging to Validate a Heat Transfer Model for Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
22
), pp.
12308
12316
.10.1016/j.ijhydene.2010.08.041
12.
Schimoi
,
R.
,
Masude
,
M.
,
Fushinobu
,
K.
,
Kozawa
,
Y.
, and
Okazaki
,
K.
,
2004
, “
Visualization of the Membrane Temperature Field of a Polymer Electrolyte Fuel Cell
,”
ASME J. Energy Resour. Technol.
,
126
, pp.
258
261
.10.1115/1.1811119
13.
Wang
,
M. H.
,
Guo
,
H.
, and
Ma
,
C. F.
,
2006
, “
Temperature Distribution on the MEA Surface of a PEMFC With Serpentine Channel Flow Bed
,”
J. Power Sources
,
157
, pp.
181
187
.10.1016/j.jpowsour.2005.08.012
14.
Adzic
,
M.
,
Heiter
,
M. V.
, and
Santos
,
D.
,
1997
, “
Design of Dedicated Instrumentation for Temperature Distribution Measurements in Solid Oxide Fuel Cells
,”
J. Appl. Electrochem.
,
27
, pp.
1355
1361
.10.1023/A:1018468911785
15.
Mench
,
M.
,
Burford
,
D. J.
, and
Davis
,
T. W.
,
2003
, “
In-Situ Temperature Distribution Measurement in an Operating Polymer Electrolyte Fuel Cell
,” ASME International Mechanical Engineering Congress and Exposition, Washington, DC, November 15–21,
ASME
Paper No. IMECE2003-42393, pp. 415–428.10.1115/IMECE2003-42393
16.
Bazylak
,
A.
,
2009
, “
Liquid Water Visualization in PEM Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
,
34
, pp.
3845
3857
.10.1016/j.ijhydene.2009.02.084
17.
Ludlow
,
D.
,
Calebrese
,
C.
,
Yu
,
S.
,
Dannehy
,
C.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2006
, “
PEM Fuel Cell Membrane Hydration Measurement by Neutron Imaging
,”
J. Power Sources
,
162
, pp.
271
278
.10.1016/j.jpowsour.2006.06.068
18.
Shimpalee
,
S.
,
Greenway
,
S.
, and
Van Zee
,
J. W.
,
2006
, “
The Impact of Channel Path Length on PEMFC Flow-Field Design
,”
J. Power Sources
,
160
, pp.
398
406
.10.1016/j.jpowsour.2006.01.099
19.
Cha
,
S. W.
,
O'Hayre
,
R.
,
Saito
,
Y.
, and
Prinz
,
F. B.
,
2004
, “
The Scaling Behavior of Flow Patterns: A Model Investigation
,”
J. Power Sources
,
134
, pp.
57
71
.10.1016/j.jpowsour.2004.03.036
20.
Lee
,
S.
,
Jeong
,
H.
,
Ahn
,
B.
,
Lim
,
T.
, and
Son
,
Y.
,
2008
, “
Parametric Study of the Channel Design at the Bipolar Plate in PEMFC Performances
,”
Int. J. Hydrogen Energy
,
33
, pp.
5691
5696
.10.1016/j.ijhydene.2008.07.038
21.
Wang
,
C. T.
,
Hu
,
Y. C.
, and
Zheng
,
P. L.
,
2010
, “
Novel Biometric Flow Slab Design for Improvement of PEMFC Performance
,”
Appl Energy
,
87
, pp.
1366
1375
.10.1016/j.apenergy.2009.05.039
22.
Wang
,
X. D.
,
Yan
,
W. M.
,
Duan
,
Y. Y.
,
Weng
,
F. B.
,
Jung
,
G. B.
, and
Lee
,
C. Y.
,
2010
, “
Numerical Study on Channel Size Effect for Proton Exchange Membrane Fuel Cell With Serpentine Flow Field
,”
Energy Convers. Manage.
,
51
, pp.
959
968
.10.1016/j.enconman.2009.11.037
23.
Shimpalee
,
S.
,
Greenway
,
S.
,
Spuckler
,
D.
, and
Van Zee
,
J. W.
,
2004
, “
Predicting Water and Current Distributions in a Commercial-Size PEMFC
,”
J. Power Sources
,
135
, pp.
79
87
.10.1016/j.jpowsour.2004.03.059
24.
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2007
, “
Numerical Studies on Rib and Channel Dimension of Flow-Field on PEMFC Performance
,”
Int. J. Hydrogen Energy
,
32
, pp.
842
856
.10.1016/j.ijhydene.2006.11.032
25.
Sinha
,
P. K.
,
Wang
,
C. Y.
, and
Su
,
A.
,
2007
, “
Optimization of Gas Diffusion Media for Elevated Temperature Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
32
, pp.
886
894
.10.1016/j.ijhydene.2006.10.066
26.
Han
,
Y.
, and
Zhan
,
J. M.
,
2010
, “
The Impact of Channel Assembled Angle on Proton Exchange Membrane Fuel Cell Performance
,”
J. Power Sources
,
195
, pp.
6586
6597
.10.1016/j.jpowsour.2010.04.067
27.
Berning
,
T.
,
Lu
,
D.
, and
Djilali
,
N.
,
2003
, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
,
134
, pp.
440
452
.10.1016/S0378-7753(03)00816-4
28.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
, pp.
2334
2342
.10.1149/1.2085971
29.
Wang
,
X. D.
,
Zhang
,
X. X.
,
Yan
,
W. M.
,
Lee
,
D. J.
, and
Su
,
A.
,
2009
, “
Determination of the Optimal Active Area for Proton Exchange Membrane Fuel Cells With Parallel, Interdigitated or Serpentine Designs
,”
Int. J. Hydrogen Energy
,
34
, pp.
3823
3832
.10.1016/j.ijhydene.2008.12.049
30.
Mazumder
,
S.
, and
Cole
,
J. V.
,
2003
, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells II. Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
,
150
, pp.
A1510
A1517
.10.1149/1.1615609
31.
Shimpalee
,
S.
,
Spuckler
,
D.
, and
Van Zee
,
J. W.
,
2007
, “
Prediction of Transient Response for a 25-cm2 PEM Fuel Cell
,”
J. Power Sources
,
167
, pp.
130
138
.10.1016/j.jpowsour.2007.02.004
32.
Wang
,
X. D.
,
Duan
,
Y. Y.
,
Yan
,
W. M.
,
Lee
,
D. J.
,
Su
,
A.
, and
Chi
,
P. H.
,
2009
, “
Channel Aspect Ratio Effect for Serpentine Proton Exchange Membrane Fuel Cell: Role of Sub-Rib Convection
,”
J. Power Sources
,
193
, pp.
684
690
.10.1016/j.jpowsour.2009.04.019
33.
Nam
,
J. H.
, and
Karviany
,
M.
,
2003
, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4595
4611
.10.1016/S0017-9310(03)00305-3
34.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
,
Redondo
,
A.
, and
Srinivasan
,
S.
,
1988
, “
Methods to Advance Technology of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
135
, pp.
2209
2214
.10.1149/1.2096240
35.
Wang
,
L.
,
Husar
,
A.
,
Zhou
,
T.
, and
Liu
,
H.
,
2003
, “
A Parametric Study of PEM Fuel Cell Performances
,”
Int. J. Hydrogen Energy
,
28
, pp.
1263
1272
.10.1016/S0360-3199(02)00284-7
36.
Büchi
,
F. N.
, and
Scherer
,
G. G.
,
2001
, “
Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
148
, pp.
A183
A188
.10.1149/1.1345868
You do not currently have access to this content.