The main goal of this study is to analyze the performance of the direct methanol single cell using three channel depths at various cell temperatures. The membrane electrode assembly (MEA) used Nafion® 117, by loading a Pt-Ru (4 mg/cm2) catalyst at the anode and Pt-black (4 mg/cm2) catalyst at the cathode. The active area of the MEA was 100 cm (Jung et al., 2009, “Investigation of Flow Bed Design in Direct Methanol Fuel Cell,” J. Solid State Electrochem., 13, pp. 1455–1465). In these sets of experiments, anode and cathode channel depth were varied simultaneously. The cell performance is improved with an increase of temperature in a certain range because the conductivity of the membrane and the reaction kinetics at both the anode and cathode are increased. Also, when the channel depth of the bipolar plate is decreased from 2.0 to 1.0 mm, the cell performance increases. The decreased channel depth leads to an increase in the linear velocity of reactants and products.

References

References
1.
Okajima
,
K.
,
Suetake
,
M.
,
Furukawa
,
K.
, and
Sudoh
,
M.
,
2002
, “
Performance of Liquid-Feed Direct Methanol Fuel Cell at Room Temperature
,”
J. Electrochem.
,
74
, pp.
186
.
2.
Jung
,
G.
,
Tu
,
C.
,
Chi
,
P.
,
Su
,
A.
,
Weng
,
F.
,
Lin
,
Y.
,
Chiang
,
Y.
,
Lee
,
C.
, and
Yan
,
W.
,
2009
, “
Investigation of Flow Bed Design in Direct Methanol Fuel Cell
,”
J. Solid State Electrochem.
,
13
, pp.
1455
1465
.10.1007/s10008-008-0722-0
3.
Garcia
,
B. L.
,
Sethuraman
, V
. A.
,
Weidner
,
J. W.
,
White
,
R. E.
, and
Dougal
,
R.
,
2004
, “
Mathematical Model of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
1
, pp.
43
48
.10.1115/1.1782927
4.
Jung
,
G.-B.
,
Su
,
A.
,
Tu
,
C.-H.
, and
Weng
,
F.-B.
,
2005
, “
Effect of Operating Parameters on the DMFC Performance
,”
ASME J. Fuel Cell Sci. Technol.
,
2
, pp.
81
85
.10.1115/1.1840887
5.
Wang
,
M.
,
Guo
,
H.
, and
Ma
,
C.
,
2006
, “
Dynamic Characteristics of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
3
, pp.
202
207
.10.1115/1.2174070
6.
Casalegno
,
A.
,
Marchesi
,
R.
, and
Rinaldi
,
F.
,
2007
, “
Systematic Experimental Analysis of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
4
, pp.
418
424
.10.1115/1.2756851
7.
Lee
,
M.-S.
,
Chen
,
L.-J.
,
Hung
,
M.-F.
,
Lo
,
M.-Y.
,
Sue
,
S.-J.
,
Lo
,
C.-H.
, and
Wang
,
Y.-P.
,
2008
, “
A Novel Design of a Cylindrical Portable Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
5
, p.
031004
.10.1115/1.2894463
8.
Kuan
,
Y.-D.
,
Lee
,
S.-M.
, and
Sung
,
M.-F.
,
2009
, “
The Cathode Airflow Effect on the Direct Methanol Fuel Cell From Single Cell to a Planar Module
,”
ASME J. Fuel Cell Sci. Technol.
,
6
, p.
011004
.10.1115/1.2971131
9.
Hwang
,
Y.-S.
,
Cha
,
S.-W.
,
Choi
,
H.
,
Lee
,
D.-Y.
, and
Kim
,
S. Y.
,
2009
, “
Influence of Flow Channel Design on the Flow Pressure Drop and the Performance of Direct Methanol Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
6
, p.
011023
.10.1115/1.2972166
10.
Oliveira
, V
. B.
,
Rangel
,
C. M.
, and
Pinto
,
A. M. F. R.
,
2011
, “
Performance of a Direct Methanol Fuel Cell Operating Close to Room Temperature
,”
ASME J. Fuel Cell Sci. Technol.
,
8
, p.
011009
.10.1115/1.4002311
11.
Jung
,
D.
,
Lee
,
C.
,
Kim
,
C.
, and
Shin
,
D.
,
1998
, “
Performance of a Direct Methanol Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
71
, pp.
169
173
.10.1016/S0378-7753(97)02793-6
12.
Ge
,
J.
, and
Liu
,
H.
,
2005
, “
Experimental Studies of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
142
, pp.
56
69
.10.1016/j.jpowsour.2004.11.022
13.
Wong
,
C.
,
Zhao
,
T.
,
Ye
,
Q.
, and
Liu
,
J.
,
2006
, “
Experimental Investigation of the Anode Flow Field of a Micro Direct Methanol Fuel Cell
,”
J. Power Sources
,
155
, pp.
291
296
.10.1016/j.jpowsour.2005.04.028
14.
Amphlett
,
J.
,
Peppley
,
B.
,
Halliop
,
E.
, and
Sadig
,
A.
,
2001
, “
The Effect of Anode Flow Characteristics and Temperature on the Performance of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
96
, pp.
204
213
.10.1016/S0378-7753(01)00490-6
15.
Guo
,
H.
,
Ma
,
C.
,
Wang
,
M.
,
Ye
,
F.
,
Wang
,
Y.
, and
Wang
,
C.
,
2004
, “
Experimental Investigation of Flow Bed Design on Performance of Liquid Feed Direct Methanol Fuel Cells
,”
J. Fuel Cell
,
4
(
1–2
), pp.
86
89
.10.1002/fuce.200400010
16.
Hwang
,
S.
,
Joh
,
H.
,
Scibioh
,
M.
,
Lee
,
S.
, and
Kim
,
S.
,
2008
, “
Impact of Cathode Channel Depth on Performance of Direct Methanol Fuel Cell
,”
J. Power Sources
,
183
, pp.
226
231
.10.1016/j.jpowsour.2008.04.043
17.
Omran
,
M. P.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2011
, “
The Effect of Cell Temperature and Channel Geometry on the Performance of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
8
, p.
061004
.10.1115/1.4004640
18.
Kulikovsky
,
A. A.
,
2008
, “
Optimal Temperature for DMFC Stack Operation
,”
Electrochim. Acta
,
53
(
22
), pp.
6391
6396
.10.1016/j.electacta.2008.04.046
19.
Baglio
,
V.
,
Stassi
,
A.
,
Matera
,
F. V.
,
Di Blasi
,
A.
,
Antonucci
,
V.
, and
Aricò
,
A. S.
,
2008
, “
Optimization of Properties and Operating Parameters of a Passive DMFC Mini-Stack at Ambient Temperature
,”
J. Power Sources
,
180
(
2
), pp.
797
802
.10.1016/j.jpowsour.2008.02.078
20.
Hashim
,
N.
,
Kamarudin
,
S. K.
, and
Daud
,
W. R. W.
,
2009
, “
Design, Fabrication and Testing of a PMMA-Based Passive Single-Cell and a Multi-Cell Stack Micro-DMFC
,”
Int. J. Hydrogen Energy
,
34
(
19
), pp.
8263
8269
.10.1016/j.ijhydene.2009.07.043
21.
Zhu
,
Y.
,
Liang
,
J.
,
Liu
,
C.
,
Ma
,
T.
, and
Wang
,
L.
,
2009
, “
Development of a Passive Direct Methanol Fuel Cell (DMFC) Twin-Stack for Long-Term Operation
,”
J. Power Sources
,
193
(
2
), pp.
649
655
.10.1016/j.jpowsour.2009.03.069
22.
Baglio
,
V.
,
Stassi
,
A.
,
Matera
,
F. V.
,
Antonucci
,
V.
, and
Aricò
,
A. S.
,
2009
, “
Investigation of Passive DMFC Mini-Stacks at Ambient Temperature
,”
Electrochim. Acta
,
54
(
7
), pp.
2004
2009
.10.1016/j.electacta.2008.07.061
23.
Baglio
,
V.
,
Stassi
,
A.
,
Matera
,
F. V.
,
Kim
,
H.
,
Antonucci
,
V.
, and
Aricò
,
A. S.
,
2010
, “
AC-Impedance Investigation of Different MEA Configurations for Passive-Mode DMFC Mini-Stack Applications
,”
Fuel Cells
,
10
(
1
), pp.
124
131
.10.1002/fuce.200900066
24.
Kuan
,
Y.
,
Lee
,
S.
, and
Sung
,
M.
,
2009
, “
Experimental Study on the Characterization of Airflow Effect on the Direct Methanol Fuel Cell
,”
Renewable Energy
,
34
, pp.
1962
1968
.10.1016/j.renene.2008.12.023
25.
Barbir
,
F.
,
2005
,
PEM Fuel Cells: Theory and Practice
,
Elsevier Academic Press
,
Burlington, VT
.
You do not currently have access to this content.