The operation of a direct methanol fuel cell with an internal combustion engine in a hybrid system is investigated in terms of fuel efficiency. The following work shows a potential for fuel saving because the engine's waste heat is utilized in preconditioning of methanol for the fuel cell and in postconditioning of the cell's anode exhaust for the engine. The low activity of methanol oxidation catalysts and methanol crossover are the main drawbacks of direct methanol fuel cells. H3PO4-doped polybenzimidazole membranes have lower methanol crossover, and allow a higher operational temperature and methanol concentration compared to Nafion membranes. The operation of the cell at higher temperature with polybenzimidazole membranes improves catalyst activity and mass transfer increasing cell efficiency. But the fuel feed to this type of membrane must be in vapor phase. Methanol solution can be evaporated by the engine coolant. Unutilized methanol in the anode exhaust is converted to H2 rich product gas in a reactor before feeding into the engine. The endothermic reaction enthalpy for this conversion is recovered from engine's exhaust gas. The system efficiency increases with the cell's fuel utilization, as long as the cell's efficiency is higher than the engine's efficiency. In order to increase the system efficiency with load, the current density of the fuel cell should not be increased beyond the point where the cell and engine efficiency meet. Beyond that, the product gas should be substituted with liquid methanol to meet the rest of the load because the engine charge's energy density can be increased with liquid methanol injection into the engine. If the engine charge is comprised of fuel cell exhaust only and the engine's indicated efficiency is 20%, the efficiency of the hybrid system will be 25.5% at a cell voltage of 0.4 V and a cell fuel utilization of 40%. This corresponds to a fuel saving of 28% compared to the internal combustion engine. The hybrid system efficiency will increase to 28.5% at this operating point, if the fuel cell's anode exhaust is further decomposed in a reactor prior to combustion in the engine. The addition of the reactor to the hybrid system corresponds to a fuel saving of 43% compared to the engine and a fuel saving of 12% compared to the hybrid system without the reactor.

References

References
1.
Ahluwalia
,
R. K.
, and
Wang
,
X.
,
2005
, “
Direct Hydrogen Fuel Cell Systems for Hybrid Vehicles
,”
J. Power Sources
,
139
(
1–2
), pp.
152
164
.10.1016/j.jpowsour.2004.07.018
2.
Penner
,
S. S.
,
Appleby
,
A. J.
,
Baker
,
B. S.
,
Bates
,
J. L.
,
Buss
,
L. B.
,
Dollard
,
W. J.
, Fartis, P. J., Gillis, E. A., Gunsher, J. A., Khandkar, A., Krumpelt, M., O'Sullivan, J. B., Runte, G., Savinell, R. F., Selman, J. R., Shores, D. A., and Tarman, P.,
1995
, “
Fuel Cell Systems Towards Commercialization
,”
Energy
,
20
(
5
), pp.
331
470
.10.1016/0360-5442(95)00003-Y
3.
Dönitz
,
W.
,
1998
, “
Fuel Cells for Mobile Applications, Status, Requirements and Future Application Potential
,”
Int. J. Hydrogen Energy
,
23
(
7
), pp.
611
615
.10.1016/S0360-3199(97)00075-X
4.
Lindström
,
B.
, and
Pettersson
,
L. J.
,
2001
, “
Hydrogen Generation by Steam Reforming of Methanol Over Copper-Based Catalysts for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
26
(
9
), pp.
923
933
.10.1016/S0360-3199(01)00034-9
5.
Amphlett
,
J. C.
,
Mann
,
R. F.
, and
Peppley
,
B.
,
1996
, “
Performance and Operating Characteristics of Methanol Steam—Reforming Catalysts for On-Board Fuel Cell Hydrogen Production
,”
Proceedings of 11th World Hydrogen Energy Conference
,
Stuttgart
,
Germany
, June 23–28, pp.
1737
1744
.
6.
Haji
,
S.
,
Malinger
,
K. A.
,
Suib
,
S. L.
, and
Erkey
C.
,
2006
, “
Fuels and Fuels Processing
,”
Fuel Cell Technology: Reaching Towards Commercialization
,
N.
Sammes
, ed.,
Springer
,
London
, pp.
165
202
.
7.
Cleghorn
,
S. J. C.
,
Ren
,
X.
,
Springer
,
T. E.
,
Wilson
,
M. S.
,
Zawodzinski
,
C.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1997
, “
PEM Fuel Cells for Transportation and Stationary Power Generation Applications
,”
Int. J. Hydrogen Energy
,
22
(
12
), pp.
1137
1144
.10.1016/S0360-3199(97)00016-5
8.
Wasmus
,
S.
, and
Küver
,
A.
,
1999
, “
Methanol Oxidation and Direct Methanol Fuel Cells: A Selective Review
,”
J. Electroanal. Chem.
,
461
(
1–2
), pp.
14
31
.10.1016/S0022-0728(98)00197-1
9.
Ren
,
X.
,
Springer
,
T. E.
, and
Gottesfeld
,
S. J.
,
2000
, “
Water and Methanol Uptakes in Nafion Membranes and Membrane Effects in Direct Methanol Cell Performance
,”
J. Electrochem. Soc.
,
147
(
1
), pp.
92
98
.10.1149/1.1393161
10.
Chu
,
D.
, and
Gilman
,
S. J.
,
1994
, “
The Influence of Methanol on O2 Electroreduction at a Rotating Pt Disk Electrode in Acid Electrolyte
,”
J. Electrochem. Soc.
,
141
(
7
), pp.
1770
1773
.10.1149/1.2055002
11.
Heinzel
,
A.
, and
Barragan
, V
. M.
,
1999
, “
A Review of the State-of-the-Art of the Methanol Crossover in Direct Methanol Fuel Cells
,”
J. Power Sources
,
84
(
1
), pp.
70
74
.10.1016/S0378-7753(99)00302-X
12.
Scott
,
K.
,
Taama
,
W.
, and
Cruikshank
,
J.
,
1997
, “
Performance and Modeling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
65
(
1–2
), pp.
159
171
.10.1016/S0378-7753(97)02485-3
13.
Hacquard
,
A.
,
2005
, “
Improving and Understanding Direct Methanol Fuel Cell Performance
,” Ph.D. thesis, Worcester Polytechnic Institute, Worcester, MA.
14.
Zhao
,
T. S.
,
Yang
,
W. W.
,
Chen
,
R.
, and
Wu
,
Q. X.
,
2010
, “
Towards Operating Direct Methanol Fuel Cells With Highly Concentrated Fuel
,”
J. Power Sources
,
195
(
11
), pp.
3451
3462
.10.1016/j.jpowsour.2009.11.140
15.
Wainright
,
J. S.
,
Wang
,
J. T.
,
Weng
,
D.
,
Savinell
,
R. F.
, and
Litt
,
M.
,
1995
, “
Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte
,”
J. Electrochem. Soc.
,
142
(
7
), pp.
L121
L123
.10.1149/1.2044337
16.
Maricle
,
D. L.
,
Murach
,
B. L.
, and
Van Dine
,
L. L.
,
1994
,
The Electrochemical Society Extended Abstracts
, The Electrochemical Society,
San Francisco, CA
, Vol. 35, p.
58
.
17.
Qingfeng
,
L.
,
Hjuler
,
H. A.
, and
Bjerrum
,
N. J.
,
2001
, “
Phosporic Acid Doped Polybenzimidazole Membranes: Physiochemical Characterization and Fuel Cell Applications
,”
J. Appl. Electrochem.
,
31
(
7
), pp.
773
779
.10.1023/A:1017558523354
18.
Lobato
,
J.
,
Canizares.
P.
,
Rodrigo
,
M. A.
,
Linares
,
J. J.
, and
Lopez-Vizcaino
,
R.
,
2008
, “
Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell
,”
Energy Fuels
,
22
(
5
), pp.
3335
3345
.10.1021/ef8001839
19.
Wang
,
J. T.
,
Wasmus
,
S.
, and
Savinell
,
R.
,
1996
, “
Real-Time Mass Spectrometric Study of the Methanol Crossover in a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
143
(
4
), pp.
1233
1239
.10.1149/1.1836622
20.
Li
,
Q.
,
He
,
R.
,
Berg
,
R. W.
,
Hjuler
,
H. A.
, and
Bjerrum
,
N. J.
,
2004
, “
Water Uptake and Acid Doping of Polybenzimidazoles as Electrolyte Membranes for Fuel Cells
,”
Solid State Ionics
,
168
(
1–2
), pp.
177
185
.10.1016/j.ssi.2004.02.013
21.
Xu
,
C.
, and
Faghri
,
A.
,
2010
, “
Mass Transport Analysis of a Passive Vapor-Feed Direct Methanol Fuel Cell
,”
J. Power Sources
,
195
(
20
), pp.
7011
7024
.10.1016/j.jpowsour.2010.05.003
22.
Izenson
,
M. G.
, and
Hill
,
R. W.
,
2005
, “
Water Balance in PEM and Direct Methanol Fuel Cells
,”
J. Fuel Cell Sci. Tech.
,
2
(
1
), pp.
1
8
.10.1115/1.1840758
23.
Sundmacher
,
K.
, and
Scott
,
K.
,
1999
, “
Direct Methanol Polymer Electrolyte Fuel Cell: Analysis of Charge and Mass Transfer in the Vapour-Liquid-Solid System
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2927
2936
.10.1016/S0009-2509(98)00344-3
24.
Sundmacher
,
K.
,
Nowitzki
,
O.
, and
Hoffmann
U.
,
1997
, “
Sauerstoffreduktion an Gasdiffusionselektroden mit Nichtedelmetall Katalysatoren
,”
Chem.-Ing.Tech.
,
69
(
8
), pp.
1143
1146
.10.1002/cite.330690818
25.
Sun
,
G. Q.
,
Wang
,
J. T.
,
Gupta
,
S.
, and
Savinell
,
R. F.
,
2001
, “
Iron(III) Tetramethoxyphenylporphyrin (FeTMPP-Cl) as Electrocatalyst for Oxygen Reduction in Direct Methanol Fuel Cells
,”
J. Appl. Electrochem.
,
31
(
9
), pp.
1025
1031
.10.1023/A:1012271920004
26.
Singhal
,
S. C.
,
2000
, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
,
135
(
1–4
), pp.
305
313
.10.1016/S0167-2738(00)00452-5
27.
Obara
,
S.
, and
Tanno
I
.
,
2007
, “
Study on Capacity Optimization of PEM Fuel Cell and Hydrogen Mixing Gas-Engine Compound Generator
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4329
4339
.10.1016/j.ijhydene.2007.05.003
28.
Baker
,
B. S.
,
2000
, “
Grove Medal Acceptance Address
,”
J. Power Sources
,
86
(
1–2
), pp.
9
15
.10.1016/S0378-7753(99)00400-0
29.
Morgenstern
,
D. A.
, and
Fornango
,
J. P.
,
2005
, “
Low-Temperature Reforming of Ethanol Over Copper-Plated Raney Nickel: A New Route to Sustainable Hydrogen for Transportation
,”
Energy Fuels
,
19
(
4
), pp.
1708
1716
.10.1021/ef049692t
30.
Lin
,
Y. M.
, and
Rei
,
M. H.
,
2000
, “
Process Development for Generating High Purity Hydrogen by Using Supported Palladium Membrane Reactor as Steam Reformer
,”
Int. J. Hydrogen Energy
,
25
(
3
), pp.
211
219
.10.1016/S0360-3199(99)00047-6
31.
Wieland
,
S.
,
Melin.
T.
, and
Lamm
,
A.
,
2002
, “
Membrane Reactors for Hydrogen Production
,”
Chem. Eng. Sci.
,
57
(
9
), pp.
1571
1576
.10.1016/S0009-2509(02)00032-5
32.
Suslu
,
O. S.
, and
Becerik
,
I.
,
2009
, “
On Board Fuel Processing for a Fuel Cell-Heat Engine Hybrid System
,”
Energy Fuels
,
23
(
4
), pp.
1858
1873
.10.1021/ef8003575
33.
Suslu
,
O. S.
,
Civelekoglu
,
M.
, and
Becerik
,
I.
,
2011
, “
Model of a Direct Methanol Fuel Cell—Internal Combustion Engine for Automotive Propulsion
,”
Abstracts of the 220th Meeting of the Electrochemical Society
, The Electrochemical Society,
Boston
, Vol. B1, p.
327
.
34.
Ren
,
X.
,
Becerra
,
J. J.
,
Hirsch
,
R. S.
, and
Gottesfeld
,
S.
,
2008
, “
Direct Oxidation Fuel Cell Operating With Direct Feed of Concentrated Fuel Under Passive Water Management
,” US Patent No. 7407721 B2.
35.
Wasmus
,
S.
,
Wang
,
J. T.
, and
Savinell
,
R. F.
,
1995
, “
Real-Time Mass Spectrometric Investigation of the Methanol Oxidation in a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
142
(
11
), pp.
3825
3833
.10.1149/1.2048420
36.
Lin
,
W. F.
,
Wang
,
J. T.
, and
Savinell
,
R. F.
,
1997
, “
On-Line FTIR Spectroscopic Investigations of Methanol Oxidation in a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
144
(
6
), pp.
1917
1922
.10.1149/1.1837721
37.
Christiansen
,
J. A.
,
1921
, “
A Reaction Between Methyl Alcohol and Water and Some Related Reactions
,”
J. Am. Chem. Soc.
,
43
(7), pp.
1670
1672
.10.1021/ja01440a032
38.
Brown
,
L. F.
,
2001
, “
A Comparative Study of Fuels for On-Board Hydrogen Production for Fuel-Cell-Powered Automobiles
,”
Int. J. Hydrogen Energy
,
26
(
4
), pp.
381
397
.10.1016/S0360-3199(00)00092-6
39.
Voecks
,
G. E.
,
Dawson
,
S.
, and
Houseman
,
J.
,
1980
, “
Operation of a Catalytic Methanol Decomposition Reactor for Vehicular Use
,” Proceedings of the 4th International Symposium on Alcohol Fuels Technology, Guaruja, Brazil, October 5–8.
40.
Finegold
,
J. G.
,
Karpuk
,
M. E.
, and
McKinnon
,
J. T.
,
1980
, “
Demonstration of Dissociated Methanol as an Automotive Fuel: System Design
,” Proceedings of the 4th International Symposium on Alcohol Fuels Technology,
Guaruja, Brazil
, October 5–8.
41.
Finegold
,
J. G.
,
Karpuk
,
M. E.
,
McKinnon
,
J. T.
, and
Passamaneck
,
R.
,
1981
, “
Demonstration of Dissociated Methanol as an Automotive Fuel: System Performance
,”
American Section of the International Solar Energy Society Conference
,
Philadelphia
, PA, May 27–30.
42.
Lindner
,
B.
, and
Sjöström
,
K.
,
1984
, “
Operation of an Internal Combustion Engine: Lean Conditions With Hydrogen Produced in an Onboard Methanol Reforming Unit
,”
Fuel
,
63
(
11
), pp.
1485
1490
.10.1016/0016-2361(84)90211-4
43.
Cheng
,
W. H.
,
1995
, “
Reaction and XRD Studies on Cu Based Methanol Decomposition Catalysts: Role of Constituents and Development of High Activity Multicomponent Catalysts
,”
Appl. Catal.
, A,
130
(
1
), pp.
13
30
.10.1016/0926-860X(95)00102-6
44.
Cheng
,
W. H.
,
1998
, “
Development of Methanol Dissociation Technology
,”
9th ROC-Japan Joint Symposium on Catalysis
,
Nantou, Taiwan, February
8–10.
45.
Cheng
,
W. H.
,
1995
, “
Deactivation and Regeneration of Methanol Decomposition Catalysts
,”
Appl. Catal. B
,
7
(1–2), pp.
127
136
.10.1016/0926-3373(95)00187-5
46.
Cheng
,
W. H.
,
Shiau
,
C. Y.
,
Liu
,
T. H.
,
Tung
,
H. L.
,
Chen
,
H. H.
,
Lu
,
J. F.
, and
Hsu
,
C. C.
,
1998
, “
Stability of Copper Based Catalysts Enhanced by Carbon Dioxide in Methanol Decomposition
,”
Appl. Catal. B
,
18
(
1–2
), pp.
63
70
.10.1016/S0926-3373(98)00024-1
47.
Cheng
W. H.
,
1999
, “
Development of Methanol Decomposition Catalysts for Production of H2 and CO
,”
Acc. Chem. Res.
,
32
(
8
), pp.
685
691
.10.1021/ar980088+
48.
Jamal
,
Y.
, and
Wyszynski
,
M. L.
,
1994
, “
On-Board Generation of Hydrogen-Rich Gaseous Fuels—A Review
,”
Int. J. Hydrogen Energy
,
19
(
7
), pp.
557
572
.10.1016/0360-3199(94)90213-5
49.
Veziroglu
,
T. N.
, and
Barbir
,
F.
,
1992
, “
Hydrogen: The Wonder Fuel
,”
Int. J. Hydrogen Energy
,
17
(
6
), pp.
391
404
.10.1016/0360-3199(92)90183-W
50.
Petkov
,
T.
,
Veziroglu
,
T. N.
, and
Sheffield
,
J. W.
,
1989
, “
An Oak of Hydrogen as an Automotive Fuel
,”
Int. J. Hydrogen Energy
,
14
(
7
), pp.
449
474
.10.1016/0360-3199(89)90031-1
51.
May
,
H.
, and
Gwinner
,
D.
,
1981
Möglichkeiten der Verbesserung von Abgasemissionen und Energieverbrauch bei Wasserstoff-Benzin-Mischbetrieb
,”
Motortech. Z.
,
42
(
1
), pp.
125
130
.
52.
Finegold
,
J. G.
,
1978
, “
Hydrogen: Primary or Supplementary Fuel for Automotive Engines
,”
Int. J. Hydrogen Energy
,
3
(
1
), pp.
83
104
.10.1016/0360-3199(78)90058-7
53.
Lindström
,
O.
,
1971
, “Saett att reducera maengden skadliga bestandsdela i det avgasflöde som avges fran en förbraenningsmotor och anordning haerför,” Swedish Patent No. SE349549 B.
54.
Lindström
,
O.
,
1972
, “Anordning för genomförande av sättet enligt patentkrav 1 i patentet 349 549, varvid reformeringsreaktorn är anordnad I värmeutbyte med även åtminstone en del av den avgas som inte införes i reformeringsreaktorn” Swedish Patent No. SE360062 B.
55.
Lindström
,
O.
,
1975
, “
Fuel Treatment for Combustion Engines
,” US Patent No. US003918412.
56.
Lindström
,
O.
,
1978
, “Sätt och anordning för drift av förbränningsmotorer,” Swedish Patent No. SE7703011 L.
57.
Lindström
,
O.
,
1981
, “
Procedure for the Operation of Combustion Engine
,” US Patent No, US004244328.
58.
Sjöström
,
K.
,
1977
, “
Fuel Converter With Methanol for Spark-Ignition Internal Combustion Engine
,”
Proceedings of the International Symposium. on Alcohol Fuel Technology—Methanol and Ethanol
,
Wolfsburg, Germany
, November 21–23.
59.
Pettersson
,
L.
, and
Sjöström
,
K.
,
1990
, “
An Experimental and Theoretical Evaluation of the Onboard Evaluation of the Onboard Decomposed Methanol Spark-Ignition Engine
,”
Comb. Sci. Tech.
71
(
1–3
), pp.
129
143
.10.1080/00102209008951628
60.
Anthonissen
,
E.
, and
Wallace
,
J. J.
,
1983
, “
Dissociated Methanol Engine Testing Results Using H2-CO Mixtures
,” 18th Intersociety Energy Conversion Engineering Conference, Orlando, FL, August 21–26.
61.
Pischinger
,
R.
,
1999
,
Kolbenmaschinen, Hochschülerschaft an der Technischen
,
Universitaet Graz
, Graz, Austria.
62.
De Boer
,
P.C.T.
,
McLean
,
W. J.
, and
Homan
,
H. S.
,
1976
, “
Performance and Emissions of Hydrogen Fueled Internal Combustion Engines
.”
Int. J. Hydrogen Energy
,
1
(
2
), pp.
153
172
.10.1016/0360-3199(76)90068-9
63.
Suzuki
,
H.
,
Koike
,
N.
, and
Adaka
,
M.
,
1997
, “
Exhaust Purification of Diesel Engines by Homogeneous Charge With Compression Ignition Part 1: Experimental Investigation of Combustion and Exhaust Emission Behavior Under Pre-Mixed Homogeneous Charge Compression Ignition Method
,”
SAE
Tech. Paper No. 970313.10.4271/970313
64.
Ishii
,
H.
,
Koike
,
N.
,
Suzuki
,
H.
, and
Odaka
,
M.
,
1997
, “
Exhaust Purification of Diesel Engines by Homogeneous Charge With Compression Ignition Part 2: Analysis of Combustion Phenomena and NOx Formation by Numerical Simulation With Experiment
,”
SAE
Tech. Paper No. 970315.10.4271/970315
65.
Glazebrook
,
R. W.
,
1982
, “
Efficiencies of Heat Engines and Fuel Cells: The Methanol Fuel Cell as a Competitor to Otto and Diesel Engines
,”
J. Power Sources
,
7
(
3
), pp.
215
256
.10.1016/0378-7753(82)80013-X
You do not currently have access to this content.