The mechanical reliability of membrane electrode assemblies (MEAs) in polymer electrolyte fuel cells (PEFCs) is a major concern for fuel cell vehicles. Hygrothermal cyclic conditions induce mechanical stress in MEAs and cracks form under operating conditions. This paper investigates the failure mechanism of MEAs under several mechanical and environmental conditions with the aim of designing durable PEFCs. We performed static tensile tests and low-cycle fatigue tests on MEAs. During the tensile tests, the temperature and humidity of the test chamber were controlled and surface crack formation of MEAs was observed in situ by a video microscope. Low-cycle fatigue tests were performed at ambient conditions and the number of cycles to crack formation was measured. The results reveal that the temperature and the humidity affect the mechanical properties of MEA. Observations of MEAs during tensile tests reveal that cracks form on the surface of catalyst layers immediately after the MEAs yield. These results indicate that reducing the deformation mismatch between the catalyst layer and the proton exchange membrane is important for suppressing crack formation in MEAs. The results of low-cycle fatigue tests reveal that the fatigue strength of a MEA follows the Coffin–Manson law so that fatigue design of MEAs based on the Coffin–Manson law is possible. This result is valuable for designing durable PEFCs.

References

References
1.
Garland
,
N. L.
, and
Kopasz
,
J. P.
,
2007
, “
The United States Department of Energy's High Temperature, Low Relative Humidity Membrane Program
,”
J. Power Sources
,
172
(
1
), pp.
94
99
.10.1016/j.jpowsour.2007.01.025
2.
Tang
,
H.
,
Peikang
,
S.
,
Jiang
,
S. P.
,
Wang
,
F.
, and
Pan
,
M.
,
2007
, “
A Degradation Study of Nafion Proton Exchange Membrane of PEM Fuel Cells
,”
J. Power Sources
,
170
(
1
), pp.
85
92
.10.1016/j.jpowsour.2007.03.061
3.
Schulze
,
M.
,
Schneider
,
A.
, and
Gulzow
,
E.
,
2004
, “
Alteration of the Distribution of the Platinum Catalyst in Membrane-Electrode Assemblies During PEFC Operation
,”
J. Power Sources
,
127
(
1–2
), pp.
213
221
.10.1016/j.jpowsour.2003.09.016
4.
Ishigami
,
Y.
,
Takada
,
K.
,
Yano
,
H.
,
Inukai
,
J.
,
Uchida
,
M.
,
Nagumo
,
Y.
,
Hyakutake
,
T.
,
Nishide
,
H.
, and
Watanabe
,
M.
,
2011
, “
Corrosion of Carbon Supports at Cathode During Hydrogen/Air Replacement at Anode Studied by Visualization of Oxygen Partial Pressures in a PEFC—Start-Up/Shut-Down Simulation
,”
J. Power Sources
,
196
(
6
), pp.
3003
3008
.10.1016/j.jpowsour.2010.11.092
5.
Jun
,
C. Y.
,
Kim
,
W. J.
, and
Yi
,
S. C.
,
2009
, “
Computational Analysis of Polarizations in Membrane-Electrode-Assembly for Proton Exchange Membrane Fuel Cells
,”
J. Membrane Sci.
,
341
, pp.
5
10
.10.1016/j.memsci.2009.06.006
6.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
,
2002
, “
Three-Dimensional Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
,
106
, pp.
284
294
.10.1016/S0378-7753(01)01057-6
7.
Silva
,
R. A.
,
Hashimoto
,
T.
,
Thompson
,
G. E.
, and
Rangel
,
C. M.
,
2012
, “
Characterization of MEA Degradation for an Open Air Cathode PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
37
(
8
), pp.
7298
7308
.10.1016/j.ijhydene.2011.12.110
8.
Luo
,
Z.
,
Li
,
D.
,
Tang
,
H.
,
Pan
,
M.
, and
Ruan
,
R.
,
2006
, “
Degradation Behavior of Membrane-Electrode-Assembly Materials in 10-Cell PEMFC Stack
,”
Int. J. Hydrogen Energy
,
31
, pp.
1831
1837
.10.1016/j.ijhydene.2006.02.029
9.
Thepkaew
,
J.
,
Therdthianwong
,
A.
, and
Therdthianwong
,
S.
,
2008
, “
Key Parameters of Active Layers Affecting Proton Exchange Membrane (PEM) Fuel Cell Performance
,”
Energy
,
33
, pp.
1794
1800
.10.1016/j.energy.2008.08.008
10.
Liu
,
D.
, and
Case
,
S.
,
2006
, “
Durability Study of Proton Exchange Membrane Fuel Cells Under Dynamic Testing Conditions With Cyclic Current Profile
,”
J. Power Sources
,
162
, pp.
521
531
.10.1016/j.jpowsour.2006.07.007
11.
Ye
,
S.
,
Hall
,
M.
,
Cao
,
H.
, and
He
,
P.
,
2006
, “
Degradation Resistant Cathodes in Polymer Electrolyte Membrane Fuel Cells
ECS Trans.
,
3
(
1
), pp.
657
666
.10.1149/1.2356186
12.
Borup
,
R.
,
Meyers
,
J.
,
Pivovar
,
B.
,
Kim
,
Y. S.
,
Mukundan
,
R.
,
Garland
,
N.
,
Myers
,
D.
,
Wilson
,
M.
,
Garzon
,
F.
,
Wood
,
D.
,
Zelenay
,
P.
,
More
,
K.
,
Stroh
,
K.
,
Zawodzinski
,
T.
,
Boncella
,
J.
,
McGrath
,
J. E.
,
Inaba
,
M.
,
Miyatake
,
K.
,
Hori
,
M.
,
Ota
,
K.
,
Ogumi
,
Z.
,
Miyata
,
S.
,
Nishikata
,
A.
,
Siroma
,
Z.
,
Uchimoto
,
Y.
,
Yasuda
,
K.
,
Kimijima
,
K.
, and
Iwashita
,
N.
,
2007
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
,”
Chem. Rev.
,
107
(
10
), pp.
3904
3951
.10.1021/cr050182l
13.
Wu
,
J.
,
Yuan
,
X. Z.
,
Martin
,
J. J.
,
Wang
,
H.
,
Zhang
,
J.
,
Shen
,
J.
,
Wu
,
S.
, and
Merida
,
W.
,
2008
, “
A Review of PEM Fuel Cell Durability: Degradation Mechanism, Mitigation Strategies
,”
J. Power Sources
,
184
(
1
), pp.
104
119
.10.1016/j.jpowsour.2008.06.006
14.
Chen
,
C.
, and
Fuller
,
T. F.
,
2009
, “
The Effect of Humidity on the Degradation of Nafion® Membrane
,”
Polymer Degradation Stability
,
94
(
9
), pp.
1436
1447
.10.1016/j.polymdegradstab.2009.05.016
15.
Li
,
H.
,
Zhang
,
J.
,
Fatih
,
K.
,
Wang
,
Z.
,
Tang
,
Y.
,
Shi
,
Z.
,
Wu
,
S.
,
Song
,
D.
,
Zhang
,
J.
,
Jia
,
N.
,
Wessel
,
S.
,
Abouatallah
,
R.
, and
Joos
,
N.
,
2008
, “
Polymer Electrolyte Membrane Fuel Cell Contamination: Testing and Diagnosis of Toluene-Induced Cathode Degradation
,”
J. Power Sources
,
185
, pp.
272
279
.10.1016/j.jpowsour.2008.07.006
16.
Yu
,
J.
,
Matsuura
,
T.
,
Yoshikawa
,
Y.
,
Islam
,
M. N.
, and
Hori
,
M.
,
2005
, “
Lifetime Behavior of a PEM Fuel Cell With Low Humidification of Feed Stream
,”
Phys. Chem. Chem. Phys.
,
7
(
2
), pp.
373
378
.10.1039/b412600a
17.
Wang
,
Z. B.
,
Zuo
,
P. J.
,
Chu
,
Y. Y.
,
Shao
,
Y. Y.
, and
Yin
,
G. P.
,
2009
, “
Durability Studies on Performance Degradation of Pt/C Catalysts of Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4387
4394
.10.1016/j.ijhydene.2009.03.045
18.
Endoh
,
E.
,
Terazono
,
S.
,
Widjaja
,
H.
, and
Takimoto
,
Y.
,
2004
, “
Degradation Study of MEA for PEMFCs Under Low Humidity Conditions
,”
Electrochem. Solid-State Lett.
,
7
(
7
), pp.
A209
A211
.10.1149/1.1739314
19.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2010
, “
Constitutive Modeling of the Rate, Temperature, and Hydration Dependent Deformation Response of Nafion to Monotonic and Cyclic Loading
,”
J. Power Sources
,
195
(
17
), pp.
5692
5706
.10.1016/j.jpowsour.2010.03.047
20.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2011
, “
Biaxial Elastic Viscoplastic Behavior of Nafion Membranes
,”
Polymer
,
52
(
2
), pp.
529
539
.10.1016/j.polymer.2010.11.032
21.
Huang
,
X.
,
Solasi
,
R.
,
Zou
,
Y.
,
Feshler
,
M.
,
Reifsn
,
K.
,
Condit
,
D.
,
Burlatsky
,
S.
, and
Madden
,
T.
,
2006
, “
Mechanical Endurance of Polymer Electrolyte and PEM Fuel Cell Durability
,”
J. Polymer Sci. Part B
,
44
(
16
), pp.
2346
2357
.10.1002/polb.20863
22.
Tang
,
Y.
,
Karlsson
,
A. M.
,
Santare
,
M. H.
,
Gilbert
,
M.
,
Cleghorn
,
S.
,
Johnson
,
W. B.
,
2006
, “
An Experimental Investigation of Humidity and Temperature Effects on the Mechanical Properties of Perfluorosulfonic Acid Membrane
,”
Mater. Sci. Eng. A
,
425
, pp.
297
304
.10.1016/j.msea.2006.03.055
23.
Shao
,
Y. Y.
,
Yin
,
G. P.
,
Wang
,
Z. B.
, and
Gao
,
Y. Z.
,
2007
, “
Proton Exchange Membrane Fuel Cell From Low Temperature to High Temperature: Material Challenges
,”
J. Power Sources
,
167
(
2
), pp.
235
242
.10.1016/j.jpowsour.2007.02.065
24.
Lai
,
Y. H.
,
Mittelstedt
,
C. K.
,
Gittleman
,
C. S.
, and
Dillard
,
D. A.
,
2009
, “
Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(
2
), p.
021002
.10.1115/1.2971045
25.
Dillard
,
D. A.
,
Li
,
Y.
,
Grohs
,
J. R.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Budinski
,
M.
, and
Gittleman
,
C. S.
,
2009
, “
On the Use of Pressure-Loaded Blister Tests to Characterize the Strength and Durability of Proton Exchange Membranes
,”
ASME J. Fuel Cell Sci. Technol.
,
6
, p.
031014
.10.1115/1.3007431
26.
Li
,
Y.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
,
Gittleman
,
C. S.
, and
Miller
,
D. P.
,
2009
, “
Fatigue and Creep to Leak Tests of Proton Exchange Membranes Using Pressure-Loaded Blisters
,”
J. Power Sources
,
194
(
2
), pp.
873
879
.10.1016/j.jpowsour.2009.06.083
27.
Grohs
,
J. R.
,
Li
,
Y.
,
Dillard
,
D. A.
,
Case
,
S. W.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
, and
Gittleman
,
C. S.
,
2009
, “
Evaluating the Time and Temperature Dependent Biaxial Strength of Gore-Select® Series 57 Proton Exchange Membrane Using a Pressure Loaded Blister Test
,”
J. Power Sources
,
195
(
2
), pp.
527
531
.10.1016/j.jpowsour.2009.07.054
28.
Jia
,
R.
,
Han
,
B.
,
Levi
,
K.
,
Hasegawa
,
T.
,
Ye
,
J.
, and
Dauskardt
,
R. H.
,
2011
, “
Mechanical Durability of Proton Exchange Membranes With Catalyst Platinum Dispersion
,”
J. Power Sources
,
196
, pp.
8234
8240
.10.1016/j.jpowsour.2011.05.069
29.
Silberstein
,
M. N.
, and
Boyce
,
M. C.
,
2011
Hygro-Thermal Mechanical Behavior of Nafion During Constrained Swelling
,”
J. Power Sources
,
196
, pp.
3452
3460
.10.1016/j.jpowsour.2010.11.116
30.
Pestrak
,
M.
,
Li
,
Y.
,
Case
,
S. W.
,
Dillard
,
D. A.
,
Ellis
,
M. W.
,
Lai
,
Y. H.
, and
Gittleman
,
C. S.
,
2010
, “
The Effect of Mechanical Fatigue on the Lifetimes of Membrane Electrode Assemblies
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041009
.10.1115/1.4000629
31.
Hicks
,
M.
,
Pierpont
,
D.
,
Turner
,
P.
, and
Watschke
,
T.
,
2006
, “
Accelerated Testing and Lifetime Modeling for the Development of Durable Fuel Cell MEAs
,”
ECS Trans.
,
1
(
8
), pp.
229
237
.10.1149/1.2214556
32.
Zhang
,
S.
,
Yuan
,
X.
,
Wang
,
H.
,
Merida
,
W.
,
Zhu
,
H.
,
Shen
,
J.
,
Wu
,
S.
, and
Zhang
,
J.
,
2009
, “
A Review of Accelerated Stress Tests of MEA Durability in PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
34
, pp.
388
404
.10.1016/j.ijhydene.2008.10.012
33.
Kim
,
S.
, and
Mench
,
M. M.
,
2007
, “
Physical Degradation of Membrane Electrode Assemblies Undergoing Freeze/Thaw Cycling: Micro-Structure Effects
,”
J. Power Sources
,
174
, pp.
206
220
.10.1016/j.jpowsour.2007.08.111
34.
Coffin
,
L. F.
,
1954
, “
A Study of the Effect of Cyclic Thermal Stresses on a Ductile Metal
,”
ASME J. Appl. Mech.
,
76
, pp.
931
950
.
35.
Manson
,
S. S.
,
1953
, “
Behavior of Materials Under Conditions of Thermal Stress
,”
NACA Tech. Notes, Rep
.
1170
, pp.
317
350
.
You do not currently have access to this content.