In this work, catalytic steam reforming of glycerol for hydrogen production was performed over Ce/Al2O3 and Pd/Al2O3 catalysts prepared via the impregnation method. The catalysts were characterized by scanning electron microscopy (SEM-EDX), transmission electron microscopy (TEM), BET surface area, and X-ray diffraction (XRD). Two sets of catalytic reactions were conducted, one comparing 1% Pd/Al2O3 to 1% Ce/Al2O3 and the second comparing 1% Ce/Al2O3 loading to 10% Ce/Al2O3 loading. All catalytic reactions were performed using a fixed-bed reactor operated at 600 °C and atmospheric pressure. Aglycerol–water mixture at a molar ratio of 1:6 was fed to the reactor at 0.05 ml/min. In the first set of experiments, Pd/Al2O3 exhibited higher hydrogen productivity than Ce/Al2O3. A maximum hydrogen yield of 56% and a maximum selectivity of 78.7% were achieved over the Pd/Al2O3 catalyst. For the second set of experiments, the results show that the reaction conversion increased as the cerium loading increased from 1% to 10%. A total average hydrogen yield of 28.0% and a selectivity of 45.5% were obtained over 1% Ce/Al2O3, while the total average hydrogen yield and selectivity were 42.2% and 52.7%, respectively, for 10% Ce/Al2O3.

References

References
1.
Nawaratna
,
G. I.
,
2009
, “
Effect of Electrical Charges on Glycerol Nanodroplets Catalytic Reforming
,” Ph.D. thesis, Mississippi State University, Mississippi State, MI.
2.
Bshish
,
A.
,
Yaakob
,
Z.
,
Narayanan
,
B.
,
Ramakrishnan
,
R.
, and
Ebshish
,
A.
,
2011
, “
Steam-Reforming of Ethanol for Hydrogen Production
,”
Chem. Papers
,
65
(
3
), pp.
251
266
.10.2478/s11696-010-0100-0
3.
Lindo
,
M.
,
Vizcaíno
,
A. J.
,
Calles
,
J. A.
, and
Carrero
,
A.
,
2010
, “
Ethanol Steam Reforming on Ni/Al-Sba-15 Catalysts: Effect of the Aluminum Content
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5895
5901
.10.1016/j.ijhydene.2009.12.120
4.
Turcoa
,
M.
,
Bagnascoa
,
G.
,
Cammarano
,
C.
,
Senese
,
P.
,
Costantino
,
U.
, and
Sisani
,
M.
,
2007
, “
Cu/Zno/Al2O3 Catalysts for Oxidative Steam Reforming of Methanol: The Role of Cu and the Dispersing Oxide Matrix
,”
Appl. Catal. B: Environmental
,
77
, pp.
46
57
.10.1016/j.apcatb.2007.07.006
5.
Profeti
,
L. P. R.
,
Ticianelli
,
E. A.
, and
Assaf
,
E. M.
,
2009
, “
Production of Hydrogen Via Steam Reforming of Biofuels on Ni/CeO2-Al2O3 Catalysts Promoted by Noble Metals
,”
Int. J. Hydrogen Energy
,
34
(
12
), pp.
5049
5060
.10.1016/j.ijhydene.2009.03.050
6.
Ahmed
,
S.
, and
Krumpelt
,
M.
,
2001
, “
Hydrogen From Hydrocarbon Fuels for Fuel Cells
,”
Int. J. Hydrogen Energy
,
26
, pp.
291
301
.10.1016/S0360-3199(00)00097-5
7.
Iulianelli
,
A.
,
Seelam
,
P. K.
,
Liguori
,
S.
,
Longo
,
T.
,
Keiski
,
R.
,
Calabro
, V
.
, and
Basile
,
A.
,
2010
, “
Hydrogen Production for PEM Fuel Cell by Gas Phase Reforming of Glycerol as Byproduct of Bio-Diesel. The Use of a Pd–Ag Membrane Reactor at Middle Reaction Temperature
,”
Int. J. Hydrogen Energy
,
36
(
6
), pp.
3827
3834
.10.1016/j.ijhydene.2010.02.079
8.
Ishikura
,
C. F. M. D. S.
,
2007
, “
Steam Reforming of Renewable Feedstock's for the Production of Hydrogen
,” Ph.D. thesis, Universidad De Zaragoza, Zaragoza, Spain.
9.
Rossia
,
C. C. R. S.
,
Alonsoa
,
C. G.
,
Antunesb
,
O. A. C.
,
Guirardelloc
,
R.
, and
Cardozo-Filhoa
,
L.
,
2009
, “
Thermodynamic Analysis of Steam Reforming of Ethanol and Glycerine for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
323
332
.10.1016/j.ijhydene.2008.09.071
10.
Kamarudina
,
S. K.
,
Daud
,
W. R. W.
,
Yaakob
,
Z.
,
Misron
,
Z.
,
Anuar
,
W.
, and
Yusuf
,
N. N. A. N.
,
2009
, “
Synthesis and Optimization of Future Hydrogen Energy Infrastructure Planning in Peninsular Malaysia
,”
Int. J. Hydrogen Energy
,
34
, pp.
2077
2088
.10.1016/j.ijhydene.2008.12.086
11.
Wang
,
H.
,
Wang
,
X.
,
Li
,
M.
,
Li
,
S.
,
Wang
,
S.
, and
Ma
,
X.
,
2009
, “
Thermodynamic Analysis of Hydrogen Production From Glycerol Autothermal Reforming
,”
Int. J. Hydrogen Energy
,
34
(
14
), pp.
5683
5690
.10.1016/j.ijhydene.2009.05.118
12.
Ebshish
,
A.
,
Yaakob
,
Z.
,
Taufiq-Yap
,
Y. H.
,
Bshish
,
A.
, and
Tasirin
,
S. M.
,
2012
, “
Review of Hydrogen Production Via Glycerol Reforming
,”
Proc IMechE Part A: J Power and Energy
,
226
(
8
), pp. 1060–1075.10.1177/0957650912464624
13.
Y.
,
Kim
,
N. D.
,
Baek
,
J.
,
Kim
,
W.
,
Lee
,
H. J.
, and
Yi
,
J.
,
2011
, “
Effect of N2O-Mediated Calcination on Nickel Species and the Catalytic Activity of Nickel Catalysts Supported on G-Al2O3 in the Steam Reforming of Glycerol
,”
Int. J. Hydrogen Energy
,
36
, pp.
3844
3852
.10.1016/j.ijhydene.2010.12.081
14.
Iriondo
,
A.
,
Barrio
, V
. L.
,
Cambra
,
J. F.
,
Arias
,
P. L.
,
Güemez
,
M. B.
,
Navarro
,
R. M.
,
Sánchez-Sánchez
,
M. C.
, and
Fierro
,
J. L. G.
,
2008
, “
Hydrogen Production From Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La
,”
Topics in Catalysis
,
49
(
1–2
), pp.
46
58
.10.1007/s11244-008-9060-9
15.
Sánchez
,
E. A.
,
D'Angelo
,
M. A.
, and
Comelli
,
R. A.
,
2010
, “
Hydrogen Production From Glycerol on Ni/Al2O3 Catalyst
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5902
5907
.10.1016/j.ijhydene.2009.12.115
16.
Ebshish
,
A.
,
Yaakob
,
Z.
,
Narayanan
,
B.
,
Bshish
,
A.
, and
Daud
,
W. R. W.
,
2011
, “
The Activity of Ni-Based Catalysts on Steam Reforming of Glycerol for Hydrogen Production
,”
Int. J. Integrated Eng.
,
3
(
1
), pp.
5
8
.
17.
Luo
,
N.
,
Fu
,
X.
,
Cao
,
F.
,
Xiao
,
T.
, and
Edwards
,
P. P.
,
2008
, “
Glycerol Aqueous Phase Reforming for Hydrogen Generation Over Pt Catalyst-Effect of Catalyst Composition and Reaction Conditions
,”
Fuel
,
87
(
17–18
), pp.
3483
3489
.10.1016/j.fuel.2008.06.021
18.
Wen
,
G.
,
Xu
,
Y.
,
Ma
,
H.
,
Xu
,
Z.
, and
Tian
,
Z.
,
2008
, “
Production of Hydrogen by Aqueous-Phase Reforming of Glycerol
,”
Int. J. Hydrogen Energy
,
33
(
22
), pp.
6657
6666
.10.1016/j.ijhydene.2008.07.072
19.
Dauenhauer
,
P. J.
,
Salge
,
J. R.
, and
Schmidt
,
L. D.
,
2006
, “
Renewable Hydrogen by Autothermal Steam Reforming of Volatile Carbohydrates
,”
J. Catal.
,
244
(
2
), pp.
238
247
.10.1016/j.jcat.2006.09.011
20.
Valliyappan
,
T.
,
Ferdous
,
D.
,
Bakhshi
,
N. N.
, and
Dalai
,
A. K.
,
2008
, “
Production of Hydrogen and Syngas Via Steam Gasification of Glycerol in a Fixed-Bed Reactor
,”
Topics Catal.
,
49
, pp.
59
67
.10.1007/s11244-008-9062-7
21.
Byrd
,
A. J.
,
Pant
,
K. K.
, and
Gupta
,
R. B.
,
2008
, “
Hydrogen Production From Glycerol by Reforming in Supercritical Water Over Ru/Al2O3 Catalyst
,”
Fuel
,
87
(
13–14
), pp.
2956
2960
.10.1016/j.fuel.2008.04.024
22.
Guo
,
Y.
,
Wang
,
S. Z.
,
Xu
,
D. H.
,
Gong
,
Y. M.
,
Ma
,
H. H.
, and
Tang
,
X. Y.
,
2010
, “
Review of Catalytic Supercritical Water Gasification for Hydrogen Production From Biomass
,”
Renewable and Sustainable Energy Reviews
,
14
(
1
), pp.
334
343
.10.1016/j.rser.2009.08.012
23.
Daskalaki
, V
. M.
, and
Kondarides
,
D. I.
,
2009
, “
Efficient Production of Hydrogen by Photo-Induced Reforming of Glycerol at Ambient Conditions
,”
Catal. Today
,
144
(
1–2
), pp.
75
80
.10.1016/j.cattod.2008.11.009
24.
Patsoura
,
A.
,
Kondarides
,
D. I.
, and
Verykios
,
X. E.
,
2006
, “
Enhancement of Photoinduced Hydrogen Production From Irradiated Pt/TiO2 Suspensions With Simultaneous Degradation of Azo-Dyes
,”
Appl. Catal. B: Environmental
,
64
, pp.
171
179
.10.1016/j.apcatb.2005.11.015
25.
Ni
,
M.
,
Leung
,
D. Y. C.
, and
Leung
,
M. K. H.
,
2007
, “
A Review on Reforming Bio-Ethanol for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
32
, pp.
3238
3247
.10.1016/j.ijhydene.2007.04.038
26.
Ebshish
,
A.
,
Yaakob
,
Z.
,
Narayanan
,
B.
,
Bshish
,
A.
, and
Daud
,
W. R. W.
,
2012
, “
Steam Reforming of Glycerol Over Ni Supported Alumina Xerogel for Hydrogen Production
,”
Energy Procedia
,
18
, pp.
552
559
.10.1016/j.egypro.2012.05.067
27.
Zhang
,
B.
,
Tang
,
X.
,
Li
,
Y.
,
Xu
,
Y.
, and
Shen
,
W.
,
2007
, “
Hydrogen Production From Steam Reforming of Ethanol and Glycerol Over Ceria-Supported Metal Catalysts
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
2367
2373
.10.1016/j.ijhydene.2006.11.003
28.
Adhikari
,
S.
,
Fernando
,
S. D.
, and
Haryanto
,
A.
,
2009
, “
Hydrogen Production From Glycerol: An Update
,”
Energy Conversion and Management
,
50
(
10
), pp.
2600
2604
.10.1016/j.enconman.2009.06.011
29.
Nobuhiro
, I
.
,
Tomoyuki
,
M.
,
Nomura
,
W.
,
Arai
,
M.
, and
Takezawa
,
N.
,
2003
, “
Effect of Zn Addition to Supported Pd Catalysts in the Steam Reforming of Methanol
,”
Appl. Catal. A: General
,
248
, pp.
153
160
.10.1016/S0926-860X(03)00184-4
30.
Iriondo
,
A.
,
Barrio
, V
. L.
,
Cambra
,
J. F.
,
Arias
,
P. L.
,
Güemez
,
M. B.
,
Navarro
,
R. M.
,
Sanchez-Sanchez
,
M. C.
, and
Fierro
,
J. L. G.
,
2009
, “
Influence of La2O3 Modified Support and Ni and Pt Active Phases on Glycerol Steam Reforming to Produce Hydrogen
,”
Catal. Commun.
,
10
(
8
), pp.
1275
1278
.10.1016/j.catcom.2009.02.004
31.
Ryashentseva
,
M. A.
,
1995
, “
Dehydrogenating Properties of Supported Low-Percentage Palladium-Containing Catalysts
,”
Russ. Chem. Rev.
,
64
(
10
), pp.
967
983
.10.1070/RC1995v064n10ABEH000188
32.
Adhikari
,
S.
,
Fernando
,
S. D.
, and
Haryanto
,
A.
,
2008
, “
Hydrogen Production From Glycerin by Steam Reforming Over Nickel Catalysts
,”
Renewable Energy
,
33
(
5
), pp.
1097
1100
.10.1016/j.renene.2007.09.005
You do not currently have access to this content.