In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.

References

References
1.
Thorstensen
,
B.
,
2001
, “
A Parametric Study of Fuel Cell System Efficiency Under Full and Part Load Operation
,”
J. Power Source.
,
92
, pp.
9
16
.10.1016/S0378-7753(00)00497-3
2.
Brouwer
,
J.
,
2010
, “
On the Role of Fuel Cells and Hydrogen in a More Sustainable and Renewable Energy Future
,”
Curr. Appl. Phys.
,
10
, pp.
s9
s17
.10.1016/j.cap.2009.11.002
3.
Ross
,
D.
,
2006
, “
Hydrogen Storage: The Major Technological Barrier to the Development of Hydrogen Fuel Cell Cars
,”
Vacuum
,
80
, pp.
1084
1089
.10.1016/j.vacuum.2006.03.030
4.
Hauer
,
K. H.
,
Potthast
,
R.
,
Wüster
,
T.
, and
Stolten
,
D.
,
2005
, “
Magnetomography—A New Method for Analysing Fuel Cell Performance and Quality
,”
J. Power Source.
,
143
, pp.
67
74
.10.1016/j.jpowsour.2004.11.054
5.
Tian
,
G.
,
Wasterlain
,
S.
,
Endichi
,
I.
,
Candusso
,
D.
,
Harel
,
F.
,
Françios
,
X.
,
Péra
,
M.-C.
,
Hissel
,
D.
, and
Kauffmann
,
J.-M.
,
2008
, “
Diagnosis Methods Dedicated to the Localisation of Failed Cells Within PEMFC Stacks
.”
J. Power Source.
,
182
, pp.
449
461
.10.1016/j.jpowsour.2007.12.038
6.
“Hydrogen Fuels Lower Emissions,”
2012
, U.K. Department of Energy, and Climate Change (DECC), https://www.gov.uk/government/news/hydrogen-fuels-lower-emissions
7.
“DOE Hydrogen and Fuel Cells Program: Fuel Cells,”
2013
, U.S. Department of Energy, http://www.hydrogen.energy.gov/fuel_cells.html
8.
Turner
,
J. A.
,
2004
, “
Sustainable Hydrogen Production
,”
Science
,
305
, pp.
972
974
.10.1126/science.1103197
9.
Momirlan
,
M.
, and
Veziroglu
,
T. N.
,
2002
, “
Current Status of Hydrogen Energy
Renew. Sust. Energ. Rev.
,
6
, pp.
142
153
.10.1016/S1364-0321(02)00004-7
10.
Steele
,
B. C. H.
, and
Heinzel
,
A.
,
2001
, “
Materials for Fuel-Cell Technologies
,”
Nature
,
414
, pp.
345
352
.10.1038/35104620
11.
Fiani
,
P.
,
Batteux
,
M.
,
Dague
,
P.
, and
Rapin
,
N.
,
2010
. “
Fuel Cell System Improvement for Model-Based Diagnosis Analysis
,” Vehicle Power and Propulsion Conference (
VPPC
), Lille, France, September 1–3, pp. 1–6.10.1109/VPPC.2010.5729142
12.
Lowery
,
N.
,
Potthast
,
R.
,
Vahdati
,
M. M.
, and
Holderbaum
,
W.
,
2012
, “
On Discrimination Algorithms for Ill-Posed Problems With an Application to Magnetic Tomography
,”
Inverse Prob.
,
28
, p. 065010.10.1088/0266-5611/28/6/065010
13.
Steiner
,
N. Y.
,
Hissel
,
D.
,
Moçotéguy
,
P.
, and
Candusso
,
D.
,
2011
, “
Non Intrusive Diagnosis of Polymer Electrolyte Fuel Cells by Wavelet Packet Transform
,”
Int. J. Hydr. Energ.
,
36
, pp.
740
746
.10.1016/j.ijhydene.2010.10.033
14.
Marx
,
B.
, and
Potthast
,
R.
2011, “Data Assimilation Algorithms for Dynamic Magnetic Tomography and Parameter Reconstruction,” (submitted).
15.
Hauer
,
K. H.
, and
Potthast
,
R.
,
2007
, “
Magnetic Tomography for Fuel Cells—Current Status and Problems
,”
J. Phys.
,
73
, p.
012008
.10.1016/j.jpowsour.2004.11.054
16.
Kress
,
R.
,
Kühn
,
L.
, and
Potthast
,
R.
,
2002
, “
The Reconstruction of a Current Distribution From its Magnetic Fields
,”
Invers. Probl.
,
18
, pp.
1127
1146
.10.1088/0266-5611/18/4/312
17.
Hauer
,
K. H.
,
Kühn
,
L.
, and
Potthast
,
R.
,
2005
, “
On Uniqueness and Non-Uniqueness for Current Reconstruction From Magnetic Fields
,”
Invers. Probl.
,
21
, pp.
955
967
.10.1088/0266-5611/21/3/010
18.
Hauer
,
K. H.
,
Potthast
,
R.
, and
Wannert
,
M.
,
2008
. “
Algorithms for Magnetic Tomography—On the Role of a Priori Knowledge and Constraints,”
Invers. Probl.
,
24
, p.
045008
.10.1088/0266-5611/24/4/045008
19.
Kirsch
,
A.
,
2010
,
An Introduction to the Mathematical Theory of Inverse Problems
,
2nd ed.
,
Springer
, New York.
20.
Groetsch
,
C. W.
,
1977
,
Generalized Inverses of Linear Operators, Dekker
,
New York.
21.
Potthast
,
R.
,
2001
,
Point Sources and Multipoles in Inverse Scattering Theory
,
Chapman & Hall
, London.
22.
Kress
,
R.
,
1999
,
Linear Integral Equations
,
Springer-Verlag
,
New York
.
23.
Colton
,
D.
, and
Kress
,
R.
,
1998
,
Inverse Acoustic and Electromagnetic Scattering Theory
,
Springer-Verlag
,
New York
.
24.
Engl
,
H.
,
Hanke
,
M.
, and
Neubauer
,
A.
,
2000
,
Regularization of Inverse Problems
,
Kluwer Acedemic Publishers
, Dordrecht, The Netherlands.
25.
Hauer
,
K. H.
, and
Potthast
,
R.
, 2005, “
Study: Magnetic Tomography for Fuel Cells
,” private communication.
26.
Potthast
,
R.
, and
Kühn
,
L.
,
2003
, “
On the Convergence of the Finite Integration Technique for the Anisotropic Boundary Value Problem of Magnetic Tomography
,”
Math. Meth. Appl. Sci.
,
26
, pp.
739
757
.10.1002/mma.392
You do not currently have access to this content.