There are various transport phenomena (gas-phase species, heat, and momentum) occurring at different length scales in anode-supported solid oxide fuel cells (SOFCs), which are strongly affected by catalytic surface reactions at active triple-phase boundaries (TPBs) between the void space (for gas), Ni (catalysts for electrons), and YSZ (an electrolyte material for ions). To understand the multiscale chemical-reacting transport processes in the cell, a three-dimensional numerical calculation approach (the computational fluid dynamics (CFD) method) is further developed and applied for a composite domain including a porous anode, fuel gas flow channel, and solid interconnect. By calculating the rate of microscopic surface-reactions involving the surface-phase species, the gas-phase species/heat generation and consumption related to the internal reforming reactions have been identified and implemented. The applied microscopic model for the internal reforming reactions describes the adsorption and desorption reactions of six gas-phase species and surface reactions of 12 surface-adsorbed species. The predicted results are presented and analyzed in terms of the gas-phase species and temperature distributions and compared with those predicted by employing the global reaction scheme for the internal reforming reactions.

References

References
1.
Hussain
,
M. M.
,
Li
,
X.
, and
Dincer
,
I.
,
2006
, “
Mathematical Modeling of Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
161
, pp.
1012
1022
.10.1016/j.jpowsour.2006.05.055
2.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C. W.
, and
Kim
,
J. W.
,
2000
, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
,
131
, pp.
189
198
.10.1016/S0167-2738(00)00633-0
3.
Yakabe
,
H.
,
Hishinuma
,
M.
,
Uratani
,
M.
,
Matsuzaki
,
Y.
, and
Yasuda
,
I.
,
2000
, “
Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
,
86
, pp.
423
431
.10.1016/S0378-7753(99)00444-9
4.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
,
2000
, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
,
87
, pp.
57
63
.10.1016/S0378-7753(99)00356-0
5.
Ackmann
,
T.
,
Haart
,
L. G. J.
,
Lehnert
,
W.
, and
Thom
,
F.
,
2000
, “
Modelling of Mass and Heat Transport in Thick-Substrate Thin-Electrolyte Layer SOFCs
,”
Proceedings of the 4th European Solid Oxide Fuel Cell Forum 2000
, Lucerne, Switzerland, July 10–14, pp.
431
438
.
6.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
,
2003
, “
Three-Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Channels Relevant for Anode-Supported Solid Oxide Fuel Cells
,”
Int. J. Heat Mass Transfer
,
46
, pp.
809
821
.10.1016/S0017-9310(02)00357-5
7.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
,
2001
, “
3-D Model Calculation for Planar SOFC
,”
J. Power Sources
,
102
, pp.
144
154
.10.1016/S0378-7753(01)00792-3
8.
Barzi
,
Y. M.
,
Ghassemi
,
M.
,
Hamedi
,
M. H.
, and
Afshari
,
E.
,
2007
, “
Numerical Analysis of Output Characteristics of a Tubular SOFC With Different Fuel Compositions and Mass Flow Rates
,”
ECS Trans.
,
7
, pp.
1919
1928
.10.1149/1.2729304
9.
Yuan
,
J.
,
Rokni
,
M.
, and
Sundén
,
B.
,
2003
, “
Combined Mass Suction and Buoyancy Effects on Heat Transfer and Gas Flow in a Fuel Cell Duct
,”
Numer. Heat Transfer, Part A
,
43
, pp.
341
366
.10.1080/10407780307358
10.
Doraswami
,
U.
,
Shearing
,
P.
,
Droushiotis
,
N.
,
Li
,
K.
,
Brandon
,
N. P.
, and
Kelsall
,
G. H.
,
2011
, “
Modelling the Effects of Measured Anode Triple-Phase Boundary Densities on the Performance of Micro-Tubular Hollow Fiber SOFCs
,”
Solid State Ionics
,
192
, pp.
494
500
.10.1016/j.ssi.2009.10.013
11.
Aguiar
,
A.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
, pp.
120
136
.10.1016/j.jpowsour.2004.06.040
12.
Hecht
,
E. S.
,
Gupta
,
G. F.
,
Zhu
,
H.
,
Dean
,
A. M.
,
Kee
,
R. J.
,
Luba
,
M.
, and
Deutschmann
,
O.
,
2005
, “
Methane Reforming Kinetics Within a Ni-YSZ SOFC Anode Support
,”
Appl. Catal. A
,
295
, pp.
40
51
.10.1016/j.apcata.2005.08.003
13.
Janardhanan
,
V. M.
, and
Deutschmann
,
O.
,
2006
, “
CFD Analysis of a Solid Oxide Fuel Cell With Internal Reforming: Coupled Interactions of Transport of Transport, Heterogeneous Catalysis and Electrochemcial Processes
,”
J. Power Sources
,
162
, pp.
1192
1202
.10.1016/j.jpowsour.2006.08.017
14.
Hofmann
,
P.
,
Panopoulos
,
K. D.
,
Fryda
,
L. E.
, and
Kakaras
,
E.
,
2009
, “
Comparison Between Two Methane Reforming Models Applied to a Quasi-Two-Dimensional Planar Solid Oxide Fuel Cell Model
,”
Energy
,
34
, pp.
2151
2157
.10.1016/j.energy.2008.09.015
15.
Yuan
,
J.
,
Huang
,
Y.
,
Sundén
,
B.
, and
Wang
,
W. G.
,
2009
, “
CFD Approach to Analyze Parameter Effects on Chemical-Reacting Transport Phenomena in SOFC Anodes
,”
Heat Mass Transfer
,
45
, pp.
471
484
.10.1007/s00231-008-0449-6
16.
Yuan
,
J.
,
Lv
,
X.
,
Sundén
,
B.
, and
Yue
,
D.
,
2007
, “
Analysis of Parameter Effects on Transport Phenomena in Conjunction With Chemical Reactions in Ducts Relevant for Methane Reformers
,”
Int. J. Hydrogen Energy
,
32
, pp.
3887
3898
.10.1016/j.ijhydene.2007.05.037
17.
Zhu
,
H.
,
Kee
,
R. J.
,
Janardhanan
,
V. M.
,
Deutschmann
,
O.
, and
Goodwin
,
D. G.
,
2005
, “
Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
152
, pp.
A2427
A2440
.10.1149/1.2116607
You do not currently have access to this content.