Standard anode supported micro tubular-solid oxide fuel cell (MT-SOFC) stacks may provide the oxidant, in relation to the fuel, in three different manifold regimes. Firstly, “co-flow” involves oxidant outside the MT-SOFC flowing co-linearly in relation to the fuel inside. Secondly, “counter flow” involves oxidant outside the MT-SOFC flowing counter-linearly in relation to the fuel inside the MT-SOFC. Finally, “cross-flow” involves the oxidant outside the MT-SOFC flowing perpendicular to the fuel flow inside the MT-SOFC. In order to examine the effect of manifold technique on MT-SOFC performance, a combination of numerical simulation and experimental measurements was performed. Furthermore, the cathode current tap location, in relation to the fuel flow, was also studied. It was found that the oxidant manifold and the location of the cathode current collection point on the MT-SOFC tested and modeled had negligible effect on the MT-SOFC's electrical and thermal performance. In this study, a single MT-SOFC was studied in order to establish the measurement technique and numerical simulation implementation as a prerequisite before further test involving a 7 cell MT-SOFC stack.

References

References
1.
Badwal
,
S. P. S.
, and
Foger
,
K.
,
1996
, “
Solid Oxide Electrolyte Fuel Cell Review
,”
Ceram. Int.
,
22
(
3
), pp.
257
265
.10.1016/0272-8842(95)00101-8
2.
Payne
,
R.
,
Love
,
J.
, and
Kah
,
M.
,
2009
, “
Generating Electricity at 60% Electrical Efficiency from 1–2 kWe SOFC Products
,”
ECS Trans.
,
25
(
2
), pp.
231
239
. 10.1149/1.3205530
3.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
,
2003
, “
Multi-Level Modeling of SOFC-Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
28
(
8
), pp.
889
900
.10.1016/S0360-3199(02)00160-X
4.
Calise
,
F.
,
Dentice D'accadia
,
M.
,
Palombo
,
A.
, and
Vanoli
,
L.
,
2006
, “
Simulation and Exergy Analysis of a Hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System
,”
Energy
,
31
(
15
), pp.
3278
3299
.10.1016/j.energy.2006.03.006
5.
Cocco
,
D.
, and
Tola
,
V.
,
2009
, “
Externally Reformed Solid Oxide Fuel Cell-Micro-Gas Turbine (SOFC-MGT) Hybrid Systems Fueled by Methanol and Di-Methyl-Ether (DME)
,”
Energy
,
34
(
12
), pp.
2124
2130
.10.1016/j.energy.2008.09.013
6.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
,
2007
, “
Modeling and Control of a SOFC-GT-Based Autonomous Power System
,”
Energy
,
32
(
4
), pp.
406
417
.10.1016/j.energy.2006.07.034
7.
Calise
,
F.
,
Dentice D’Accadia
,
M.
,
Vanoli
,
L.
, and
Von Spakovsky
,
M. R.
,
2007
, “
Full Load Synthesis/Design Optimization of a Hybrid SOFC-GT Power Plant
,”
Energy
,
32
(
4
), pp.
446
458
.10.1016/j.energy.2006.06.016
8.
Komatsu
,
Y.
,
Kimijima
,
S.
, and
Szmyd
,
J. S.
,
2010
, “
Performance Analysis for the Part-Load Operation of a Solid Oxide Fuel Cell-Micro Gas Turbine Hybrid System
,”
Energy
,
35
(
2
), pp.
982
988
.10.1016/j.energy.2009.06.035
9.
Burer
,
M.
,
Tanaka
,
K.
,
Favrat
,
D.
, and
Yamada
,
K.
,
2003
, “
Multi-Criteria Optimization of a District Cogeneration Plant Integrating a Solid Oxide Fuel Cell-Gas Turbine Combined Cycle, Heat Pumps and Chillers
,”
Energy
,
28
(
6
), pp.
497
518
.10.1016/S0360-5442(02)00161-5
10.
Santin
,
M.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A.
,
2010
, “
Thermoeconomic Analysis of SOFC-GT Hybrid Systems Fed by Liquid Fuels
,”
Energy
,
35
(
2
), pp.
1077
1083
.10.1016/j.energy.2009.06.012
11.
Sidwell
,
R. W.
, and
Coors
,
W. G.
,
2005
, “
Large Limits of Electrical Efficiency in Hydrocarbon Fueled SOFCs
,”
J. Power Sources
,
143
(
1–2
), pp.
166
172
.10.1016/j.jpowsour.2004.12.004
12.
Kurachi
,
S.
,
Mizutani
,
Y.
,
Hiroyama
,
T.
,
Katsurayama
,
K.
,
Okada
,
F.
, and
Ukai
,
K.
,
2009
, “
Development of a Small-Scale Solid Oxide Fuel Cell (SOFC)
,”
24th World Gas Conference, Buenos Aires
, Argentina, October 5–9, available at http://www.igu.org/html/wgc2009/papers/docs/wgcFinal00379.pdf, accessed December 29, 2012.
13.
Howe
,
K. S.
,
Thompson
,
G. J.
, and
Kendall
,
K.
,
2011
, “
Micro-Tubular Solid Oxide Fuel Cells and Stacks
,”
J. Power Sources
,
196
(
4
), pp.
1677
1686
.10.1016/j.jpowsour.2010.09.043
14.
Wakui
,
T.
,
Yokoyama
,
R.
, and
Shimizu
,
K.-I.
,
2010
, “
Suitable Operational Strategy for Power Interchange Operation Using Multiple Residential SOFC (Solid Oxide Fuel Cell) Cogeneration Systems
,”
Energy
,
35
(
2
), pp.
740
750
.10.1016/j.energy.2009.09.029
15.
Ghosh
,
S.
, and
De
,
S.
,
2006
, “
Energy Analysis of a Cogeneration Plant Using Coal Gasification and Solid Oxide Fuel Cell
,”
Energy
,
31
(
2–3
), pp.
345
363
.10.1016/j.energy.2005.01.011
16.
Bujalski
,
W.
,
Dikwal
,
C. M.
, and
Kendall
,
K.
,
2007
, “
Cycling of Three Solid Oxide Fuel Cell Types
,”
J. Power Sources
,
171
(
1
), pp.
96
100
.10.1016/j.jpowsour.2007.01.029
17.
Alston
,
T.
,
Kendall
,
K.
,
Palin
,
M.
,
Prica
,
M.
, and
Windibank
,
P.
,
1998
, “
A 1000-Cell SOFC Reactor for Domestic Cogeneration
,”
J. Power Sources
,
71
(
1–2
), pp.
271
274
.10.1016/S0378-7753(97)02756-0
18.
Yamaguchi
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
,
Awano
,
M.
, and
Shimizu
,
S.
,
2010
, “
Novel Electrode-Supported Honeycomb Solid Oxide Fuel Cell: Design and Fabrication
,”
J. Fuel Cell Sci. Technol.
,
7
(
4
), p.
041001
.10.1115/1.3206975
19.
Yamaguchi
,
T.
,
Shimizu
,
S.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
,
2009
, “
Evaluation of Extruded Cathode Honeycomb Monolith-Supported SOFC Under Rapid Start-Up Operation
,”
Electrochim. Acta
,
54
(
5
), pp.
1478
1482
.10.1016/j.electacta.2008.09.029
20.
Lin
,
P.-H.
, and
Hong
,
C.-W.
,
2009
, “
Cold Start Dynamics and Temperature Sliding Observer Design of an Automotive SOFC APU
,”
J. Power Sources
,
187
(
2
), pp.
517
526
.10.1016/j.jpowsour.2008.11.043
21.
Aguiar
,
P.
,
Brett
,
D. J. L.
, and
Brandon
,
N. P.
,
2007
, “
Feasibility Study and Techno-Economic Analysis of an SOFC/Battery Hybrid System for Vehicle Applications
,”
J. Power Sources
,
171
(
1
), pp.
186
197
.10.1016/j.jpowsour.2006.12.049
22.
Du
,
Y.
,
Finnerty
,
C.
, and
Jiang
,
J.
,
2008
, “
Thermal Stability of Portable Microtubular SOFCs and Stacks
,”
J. Electrochem. Soc.
,
155
(
9
), pp.
B972
B977
.10.1149/1.2953590
23.
Penner
,
S. S.
,
Appleby
,
A. J.
,
Baker
,
B. S.
,
Bates
,
J. L.
,
Buss
,
L. B.
,
Dollard
,
W. J.
,
Fartis
,
P. J.
,
Gillis
,
E. A.
,
Gunsher
,
J. A.
,
Khandkar
,
A.
,
Krumpelt
,
M.
,
O'Sullivan
,
J. B.
,
Runte
,
G.
,
Savinell
,
R. F.
,
Selman
,
J. R.
,
Shores
,
D. A.
, and
Tarman
,
P.
,
1995
, “
Commercialization of Fuel Cells
,”
Energy
,
20
(
5
), pp.
331
470
.10.1016/0360-5442(95)00003-Y
24.
Lutsey
,
N.
,
Brodrick
,
C.-J.
, and
Lipman
,
T.
,
2007
, “
Analysis of Potential Fuel Consumption and Emissions Reductions From Fuel Cell Auxiliary Power Units (APUs) in Long-Haul Trucks
,”
Energy
,
32
(
12
), pp.
2428
2438
.10.1016/j.energy.2007.05.017
25.
Maru
,
H. C.
,
Singhal
,
S. C.
,
Stone
,
C.
, and
Wheeler
,
D.
,
2010
, “
1–10 kW Stationary Combined Heat and Power Systems Status and Technical Potential
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/BK-6A10-48265, available at http://www.nrel.gov/docs/fy11osti/48265.pdf, accessed December 29, 2012.
26.
Lawlor
,
V.
,
Griesser
,
S.
,
Buchinger
,
G.
,
Olabi
,
A. G.
,
Cordiner
,
S.
, and
Meissner
,
D.
,
2009
, “
Review of the Micro-Tubular Solid Oxide Fuel Cell: Part I. Stack Design Issues and Research Activities
,”
J. Power Sources
,
193
(
2
), pp.
387
399
.10.1016/j.jpowsour.2009.02.085
27.
Kendall
,
K.
,
2009
, “
Progress in Microtubular Solid Oxide Fuel Cells
,”
Int. J. Appl. Ceram. Technol.
,
7
(
1
), pp.
1
9
.10.1111/j.1744-7402.2008.02350.x
28.
Kendall
,
K.
,
2005
, “
Progress in Solid Oxide Fuel Cell Materials
,”
Int. Mater. Rev.
,
50
(
5
), pp.
257
264
.10.1179/174328005X41131
29.
Recknagle
,
K. P.
,
Williford
,
R. E.
,
Chick
,
L. A.
,
Rector
,
D. R.
, and
Khaleel
,
M. A.
,
2003
, “
Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks
,”
J. Power Sources
,
113
(
1
), pp.
109
114
.10.1016/S0378-7753(02)00487-1
30.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
,
2008
, “
Computational Thermal-Fluid Analysis of a Microtubular Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
,
55
(
11
), pp.
B1117
B1127
.10.1149/1.2971194
31.
Sleiti
,
A. K.
,
2010
, “
Performance of Tubular Solid Oxide Fuel Cell at Reduced Temperature and Cathode Porosity
,”
J. Power Sources
,
195
(
17
), pp.
5719
5725
.10.1016/j.jpowsour.2010.03.044
32.
Cordiner
,
S.
,
Mariani
,
A.
, and
Mulone
,
V.
,
2010
, “
CFD-Based Design of Microtubular Solid Oxide Fuel Cells
,”
J. Heat Transfer
,
132
(
6
), p.
062801
.10.1115/1.4000709
33.
Sciacovelli
,
A.
, and
Verda
,
V.
,
2009
, “
Entropy Generation Analysis in a Monolithic-Type Solid Oxide Fuel Cell (SOFC)
,”
Energy
,
34
(
7
), pp.
850
865
.10.1016/j.energy.2009.03.007
34.
ANSYS
,
2006
,
Fluent 6.3 User's Guide
,
Fluent Inc.
,
Canonsburg, PA
.
35.
ANSYS
,
2009
,
Fluent CFD User Manual: Chapter 3 SOFC Model Theory
,
Fluent Inc
,
Canonsburg, PA
.
36.
Noren
,
D. A.
, and
Hoffman
,
M. A.
,
2005
, “
Clarifying the Butler–Volmer Equation and Related Approximations for Calculating Activation Losses in Solid Oxide Fuel Cell Models
,”
J. Power Sources
,
152
, pp.
175
181
.10.1016/j.jpowsour.2005.03.174
37.
Christman
,
K. L.
, and
Jensen
,
M. K.
,
2011
, “
Solid Oxide Fuel Cell Performance With Cross-Flow Roughness
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
2
), p.
024501
.10.1115/1.4002399
38.
Lawlor
,
V.
,
2010
, “
Study to Characterise the Performance of MT-SOFCs by the Invention of an Avant Garde Experimental Apparatus and Computational Modelling
,” Ph.D. thesis, Dublin City University, Dublin, Ireland.
39.
Lawlor
,
V.
,
Hochenauer
,
C.
,
Griesser
,
S.
,
Zauner
,
G.
,
Buchinger
,
G.
,
Meissner
,
D.
,
Olabi
,
A. G.
,
Klein
,
K.
,
Kuehn
,
S.
,
Cordiner
,
S.
, and
Mariani
,
A.
,
2011
, “
The Use of a High Temperature Wind Tunnel for MT-SOFC Testing—Part II: Use of Computational Fluid Dynamics Software in Order to Study Previous Measurements
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
6
), p.
061019
.10.1115/1.4004507
40.
Lawlor
,
V.
,
Zauner
,
G.
,
Hochenauer
,
C.
,
Mariani
,
A.
,
Griesser
,
S.
,
Carton
,
J. G.
,
Klein
,
K.
,
Kuehn
,
S.
,
Olabi
,
A. G.
,
Cordiner
,
S.
,
Meissner
,
D.
, and
Buchinger
,
G.
,
2010
, “
The Use of a High Temperature Wind Tunnel for MT-SOFC Testing—Part I: Detailed Experimental Temperature Measurement of an MT-SOFC Using an Avant-Garde High Temperature Wind Tunnel and Various Measurement Techniques
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
6
), p.
061016
.10.1115/1.4001354
41.
ANSYS
,
2006
,
Fluent 6.3 SOFC Model Tutorial
,
Fluent Inc.
(Tutorial Series),
Canonsburg, PA
.
42.
Cui
,
D.
, and
Cheng
,
M.
,
2009
, “
Thermal Stress Modeling of Anode Supported Micro-Tubular Solid Oxide Fuel Cell
,”
J. Power Sources
,
192
(
2
), pp.
400
407
.10.1016/j.jpowsour.2009.03.046
43.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2007
, “
Parametric Study of Solid Oxide Fuel Cell Performance
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1525
1535
.10.1016/j.enconman.2006.11.016
44.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2007
, “
Micro-Scale Modelling of Solid Oxide Fuel Cells With Micro-Structurally Graded Electrodes
,”
J. Power Sources
,
168
(
2
), pp.
369
378
.10.1016/j.jpowsour.2007.03.005
45.
Lawlor
,
V.
,
Zauner
,
G.
,
Mariani
,
A.
,
Hochenauer
,
C.
,
Griesser
,
S.
,
Carton
,
J.
,
Kuehn
,
S.
,
Klein
,
K.
,
Meissner
,
D.
,
Olabi
,
A. G.
,
Cordiner
,
S.
, and
Buchinger
,
G.
,
2009
, “
A Study to Investigate Methods to Measure the Temperature of a MT-SOFC in a High Temperature Wind Tunnel
,”
Proceedings of EFC2009
,
Rome, Italy
, December 15–18, pp.
76
77
.
46.
Andersson
,
M.
,
Yuan
,
J.
, and
Sunden
,
B.
,
2010
, “
Review on Modeling Development for Multiscale Chemical Reactions Coupled Transport Phenomena in Solid Oxide Fuel Cells
,”
Appl. Energy
,
87
(
5
), pp.
1461
1476
.10.1016/j.apenergy.2009.11.013
47.
Zhu
,
H.
, and
Kee
,
R. J.
,
2003
, “
A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies
,”
J. Power Sources
,
117
(
1–2
), pp.
61
74
.10.1016/S0378-7753(03)00358-6
48.
Prinkey
,
M.
,
Gemmen
,
R.
, and
Rogers
,
W.
,
2001
, “
Application of a New CFD Analysis Tool for SOFC Technology
,”
Proceedings of IMECE
, New York, November 11–16, pp.
291
300
.
49.
Serincan
,
M. F.
,
Pasaogullari
,
U.
, and
Sammes
,
N. M.
,
2009
, “
Effects of Operating Conditions on the Performance of a Micro-Tubular Solid Oxide Fuel Cell (SOFC)
,”
J. Power Sources
,
192
(
2
), pp.
414
422
.10.1016/j.jpowsour.2009.03.049
50.
Qu
,
Z.
,
Aravind
,
P. V.
,
Boksteen
,
S. Z.
,
Dekker
,
N. J. J.
,
Janssen
,
A. H. H.
,
Woudstra
,
N.
, and
Verkooijen
,
A. H. M.
,
2011
, “
Three-Dimensional Computational Fluid Dynamics Modeling of Anode-Supported Planar SOFC
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10209
10220
.10.1016/j.ijhydene.2010.11.018
You do not currently have access to this content.