Planar solid oxide fuel cells are made up of repeating sequences of electrolytes, electrodes, seals, and current collectors. The electrolyte should be as thin as possible for optimal electrochemical efficiency; however, for electrolyte-supported cells, the thin electrolytes are susceptible to damage during production, assembly, and operation. To produce cells that are sufficiently mechanically robust, electrolytes can be made having a cosintered honeycomb structure that supports thin, electrochemically efficient electrolyte membranes. Use of finite element analysis is desirable to mechanically characterize such electrolytes. To maintain reasonable numbers of elements and element aspect ratios, it is not possible to simultaneously model the small-scale details together with the overall membrane response. A two-scale approach is devised: the smaller mesoscale analyzes a representative area of the electrolyte, while the larger macroscale examines the electrolyte as a whole. Elastic properties for the mesoscale model are measured over a range of temperatures using a sonic resonance technique. Effective properties for the macroscale are obtained over a range of mesoscale geometries and can be obtained without needing to rerun the mesoscale simulations. The effective properties are experimentally validated using four-point bend experiments on representative samples. The bulk properties and the effective properties can then be used as material inputs for the macroscale model in order to design cells that are more sufficiently mechanically robust without sacrificing electrochemical performance.

References

References
1.
Haile
,
S. M.
,
2003
, “
Fuel Cell Materials and Components
,”
Acta Mater.
,
51
(
19
), pp.
5981
6000
.10.1016/j.actamat.2003.08.004
2.
Ormerod
,
R. M.
,
2003
, “
Solid Oxide Fuel Cells
,”
Chem. Soc. Rev.
,
32
(
1
), pp.
17
28
.10.1039/b105764m
3.
Singh
,
P.
, and
Minh
,
N. Q.
,
2005
, “
Solid Oxide Fuel Cells: Technology Status
,”
Int. J. Appl. Ceram. Technol.
,
1
(
1
), pp.
5
15
.10.1111/j.1744-7402.2004.tb00149.x
4.
Minh
,
N. Q.
,
2004
, “
Solid Oxide Fuel Cell Technology—Features and Applications
,”
Solid State Ionics
,
174
(
1–4
), pp.
271
277
.10.1016/j.ssi.2004.07.042
5.
Sammes
,
N.
,
Smirnova
,
A.
, and
Vasylyev
,
O.
, eds.,
2005
,
Fuel Cell Technologies: State and Perspectives
, Vol.
202
,
Springer
,
New York
, pp.
19
34
.
6.
Xue
,
L. A.
,
Barringer
,
E. A.
,
Cable
,
T. L.
,
Goettler
,
R. W.
, and
Kneidel
,
K. E.
,
2004
, “
SOFCo Planar Solid Oxide Fuel Cell
,”
Int. J. Appl. Ceram. Technol.
,
1
(
1
), pp.
16
22
.10.1111/j.1744-7402.2004.tb00150.x
7.
Timurkutluk
,
B.
,
Celik
,
S.
,
Timurkutluk
,
C.
,
Mat
,
M. D.
, and
Kaplan
,
Y.
,
2012
, “
Novel Structured Electrolytes for Solid Oxide Fuel Cells
,”
J. Power Sources
,
213
, pp.
47
54
.10.1016/j.jpowsour.2012.04.021
8.
Cooley
,
N.
,
2009
, “
NexTech Materials Demonstrates World's Largest SOFC Platform
,”
Int. J. Hydrogen Energy
,
34
(
19
), p.
8454
.10.1016/j.ijhydene.2009.07.108
9.
Chapelle
,
D.
, and
Bathe
,
K. J.
,
1998
, “
Fundamental Considerations for the Finite Element Analysis of Shell Structures
,”
Comput. Struct.
,
66
(
1
), pp.
19
36
.10.1016/S0045-7949(97)00078-3
10.
Yamamoto
,
O.
,
Arati
,
Y.
,
Takeda
,
Y.
,
Imanishi
,
N.
,
Mizutani
,
Y.
,
Kawai
,
M.
, and
Nakamura
,
Y.
,
1995
, “
Electrical Conductivity of Stabilized Zirconia With Ytterbia and Scandia
,”
Solid State Ionics
,
79
, pp.
137
142
.10.1016/0167-2738(95)00044-7
11.
Selçuk
,
A.
, and
Atkinson
,
A.
,
1997
, “
Elastic Properties of Ceramic Oxides Used in Solid Oxide Fuel Cells (SOFC)
,”
J. Eur. Ceram. Soc.
,
17
(
12
), pp.
1523
1532
.10.1016/S0955-2219(96)00247-6
12.
Selçuk
,
A.
, and
Atkinson
,
A.
,
2004
, “
Strength and Toughness of Tape-Cast Yttria-Stabilized Zirconia
,”
J. Am. Ceram. Soc.
,
83
(
8
), pp.
2029
2035
.10.1111/j.1151-2916.2000.tb01507.x
13.
ASTM International
,
2009
, “
ASTM E1876-09 Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration
,” retrieved September 29, 2012, http://www.astm.org/Standards/E1876.htm
14.
Shimada
,
M.
,
Matsushita
,
K.
,
Kuratani
,
S.
,
Okamoto
,
T.
,
Koizumi
,
M.
,
Tsukuma
,
K.
, and
Tsukidate
,
T.
,
1984
, “
Temperature Dependence of Young's Modulus and Internal Friction in Alumina, Silicon Nitride, and Partially Stabilized Zirconia Ceramics
,”
J. Am. Ceram. Soc.
,
67
(
2
), pp.
C23
C24
.10.1111/j.1151-2916.1984.tb09612.x
15.
Adams
,
J. W.
,
Ruh
,
R.
, and
Mazdiyasni
,
K. S.
,
2005
, “
Young's Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia Versus Temperature
,”
J. Am. Ceram. Soc.
,
80
(
4
), pp.
903
908
.10.1111/j.1151-2916.1997.tb02920.x
16.
Giraud
,
S.
, and
Canel
,
J.
,
2008
, “
Young's Modulus of Some SOFCs Materials as a Function of Temperature
,”
J. Eur. Ceram. Soc.
,
28
(
1
), pp.
77
83
.10.1016/j.jeurceramsoc.2007.05.009
17.
Xia
,
Z.
,
Zhang
,
Y.
, and
Ellyin
,
F.
,
2003
, “
A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications
,”
Int. J. Solids Struct.
,
40
(
8
), pp.
1907
1921
.10.1016/S0020-7683(03)00024-6
18.
Gibson
,
L. J.
,
1989
, “
Modelling the Mechanical Behavior of Cellular Materials
,”
Mater. Sci. Eng., A
,
110
, pp.
1
36
.10.1016/0921-5093(89)90154-8
19.
Staab
,
G. H.
,
1999
,
Laminar Composites
,
Butterworth-Heinemann
,
Woburn, MA
.
20.
Suresh
,
A. D.
,
2010
, “
Modeling of Electrolytic Membranes for Large Area Planar Solid Oxide Fuel Cells
,”
M.S. thesis
,
The Ohio State University
,
Columbus, OH
.
21.
Ponraj
,
R.
, and
Iyer
,
S. R.
,
1992
, “
A Simple Four-Point Bend Creep Testing Apparatus for Brittle Ceramic Materials
,”
J. Mater. Sci. Lett.
,
11
(
14
), pp.
1000
1003
.10.1007/BF00729906
You do not currently have access to this content.