A one-dimensional, isothermal model for a direct methanol fuel cell (DMFC) is presented. This model accounts for the kinetics of the multi-step methanol oxidation reaction at the anode. Diffusion and crossover of methanol are modeled and the mixed potential of the oxygen cathode due to methanol crossover is included. Kinetic and diffusional parameters are estimated by comparing the model to data from a 25cm2 DMFC. This semi-analytical model can be solved rapidly so that it is suitable for inclusion in real-time system level DMFC simulations.

1.
Cruickshank
,
J.
, and
Scott
,
K.
, 1998, “
The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753
70
(
1
), pp.
40
-
47
.
2.
Scott
,
K.
,
Taama
,
W. M.
,
Argyropoulos
,
P.
, and
Sundmacher
,
K.
, 1999. “
The Impact of Mass Transport and Methanol Crossover on the Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753
83
(
1-2
), pp.
204
-
216
.
3.
Ren
,
X.
,
Springer
,
T. E.
, and
Gottesfeld
,
S.
, 2000, “
Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance
,”
J. Electrochem. Soc.
0013-4651
147
(
1
), pp.
92
-
98
.
4.
Dohle
,
H.
,
Divisek
,
J.
,
Merggel
,
J.
,
Oetjen
,
H. F.
,
Zingler
,
C.
, and
Stolten
,
D.
, 2002, “
Recent Developments of the Measurement of the Methanol Permeation in a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753
105
(
2
), pp.
274
-
282
.
5.
Carrette
,
L.
,
Friedrich
,
K. A.
, and
Stimming
,
U.
, 2001, “
Fuel Cells—Fundamentals and Applications
,”
Fuel Cells
1615-6846
1
(
1
), pp.
5
-
39
.
6.
Gasteiger
,
H. A.
,
Markovic
,
N. M.
, and
Ross
,
P. N.
, 1995, “
H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating-Disk Electrode Studies of the Pure Gases Including Temperature Effects
,”
J Phys Chem
,
99
(
20
), pp.
8290
-
8301
.
7.
Iwasita
,
T.
, 2002, “
Electrocatalysis of Methanol Oxidation
,”
Electrochim. Acta
0013-4686
47
(
22-23
), pp.
3663
-
3674
.
8.
Desai
,
S.
, and
Neurock
,
M.
, 2003, “
A First Principles Analysis of CO Oxidation Over Pt and Pt66.7%Ru33.3%(111) Surfaces
,”
Electrochim. Acta
0013-4686
48
(
25-26
), pp.
3759
-
3773
.
9.
Meyers
,
J. P.
, and
Newman
,
J.
, 2002, “
Simulation of the Direct Methanol Fuel Cell-II. Modeling and Data Analysis of Transport and Kinetic Phenomena
,”
J. Electrochem. Soc.
0013-4651
149
(
6
), pp.
A718
-
A728
.
10.
Baxter
,
S. F.
,
Battaglia
,
V. S.
, and
White
,
R. E.
, 1999, “
Methanol Fuel Cell Model: Anode
,”
J. Electrochem. Soc.
0013-4651
146
(
2
), pp.
437
-
447
.
11.
Kulikovsky
,
A. A.
, 2003, “
Analytical Model of the Anode Side of DMFC: The Effect of Non-Tafel Kinetics on Cell Performance
,”
Electrochem. Commun.
5
(7), pp.
530
-
538
.
12.
Wang
,
Z. H.
, and
Wang
,
C. Y.
, 2003, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651
150
(
4
), pp.
A508
-
A519
.
13.
Nordlund
,
J.
, and
Lindbergh
,
G.
, 2002, “
A Model for the Porous Direct Methanol Fuel Cells Anode
,”
J. Electrochem. Soc.
0013-4651
149
(
9
), pp.
A1107
-
A1113
.
14.
Wilson
,
M. S.
, 1993, U.S. Patent 5,211,984.
15.
Slattery
,
J. C.
, 1999,
Advanced Transport Phenomena
Cambridge University Press
, Cambridge, MA.
16.
Scott
,
K.
,
Taama
,
W.
, and
Cruickshank
,
J.
, 1997, “
Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753
65
(
1-2
), pp.
159
-
171
.
17.
Parthasarathy
,
A.
,
Srinivasan
,
S.
,
Appleby
,
A. J.
, and
Martin
,
C. R.
, 1992, “
Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion Interface—a Microelectrode Investigation
,”
J. Electrochem. Soc.
0013-4651
139
(
9
), pp.
2530
-
2537
.
18.
Ren
,
X. M.
,
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 2000, “
Methanol Transport through Nafion Membranes—Electro-Osmotic Drag Effects on Potential Step Measurements
,”
J. Electrochem. Soc.
0013-4651
147
(
2
), pp.
466
-
474
.
You do not currently have access to this content.