Time dependent properties and performance of tubular solid oxide fuel cells were studied numerically and experimentally. The numerical model incorporated local characteristics such as porosity, tortuosity, grain size, and conductivity and was used to evaluate the specific and relative changes in performance caused by the effect of time-dependent material changes of those characteristics. A 500 hour experimental study was conducted at 800°C in 97%H23%H2O on an extruded LSCo-La0.6Sr0.4CoO3LSGMNi electrolyte-supported tubular SOFC made in our laboratory. Changes in current density with time (at constant voltage) formed a curve with initial convex (upward) curvature, becoming monotonic decreasing. The microstructure of the constituent layers was examined by scanning electron microscopy. Comparisons between model predictions and experimental observations were made. For the situation modeled and tested, the porosity and ionic conductivity were found to be most influential on performance. More importantly, the effect of porosity is a trade-off between the influence on gas transport and the mixed conductor influence on the electrochemical reactions at the electrode.

1.
Jørgensen
,
M. J.
, and
Holtappels
,
P.
, 2000, “
Durability Test of SOFC Cathodes
,”
J. Appl. Electrochem.
0021-891X
30
, pp.
411
418
.
2.
Jørgensen
,
M. J.
, and
Primdahl
,
S.
, 2001, “
Effect of Sintering Temperature and Performance of LSM-YSZ Composite Cathodes
,”
Solid State Ionics
0167-2738
139
, pp.
1
11
.
3.
Choi
,
J. H.
, and
Jang
,
J. H.
, 2000, “
Microstructure and Cathodic Performance of La0.9Sr0.1MnO3 Electrodes According to Particle Size of the Sarting Powder
,”
J. Power Sources
0378-7753
87
, pp.
92
100
.
4.
Gibson
,
I. R.
, and
Dransfield
,
G. P.
, 1998,
European Ceramic Society
18
,pp.
661
667
.
5.
Appel
,
C. C.
, and
Bonanos
,
N.
, 2001,
J. Mater. Sci.
0022-2461
36
, pp.
4493
4501
.
6.
Linderoth
,
S.
, and
Bonanos
,
N.
, 2004,
Journal of American Ceramic Society
in press.
7.
Ishihara
,
T.
, and
Akbay
,
T.
, 1998, “
Improved Oxide Ion Conductivity of Co Doped La0.8Sr0.2Ga0.8Mg0.2O3 Perovskite Type Oxide
,”
Solid State Ionics
, 0167-2738
pp.
113
115
.
8.
Horita
,
T.
, and
Yamaji
,
K.
, 2000, “
Stability at La0.6Sr0.4CoO3−d (LSC) Cathode/La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM) Electrolyte Interface Under Current Flow for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738
138
, pp.
143
152
.
9.
Jensen
,
K. V.
, and
Primdahl
,
S.
, 2001, “
MicroStructure and Chemical Changes at the Ni∕YSZ Interface
,”
Solid State Ionics
0167-2738
144
, pp.
197
209
.
10.
Jensen
,
K. V.
, and
Wallenberg
,
R.
, 2003, “
Effect of Impurities on Structural and Electrochemical Properties of the Ni∕YSZ Interface
,”
Solid State Ionics
0167-2738
160
, pp.
27
37
.
11.
Yoo
,
H.
, and
Lee
,
K.
, 1998,
J. Electrochem. Soc.
0013-4651
145
, p.
4243
.
12.
Sunde
,
S.
, 2000, “
Simulation of Composite Electrodes in Fuel Cells
,”
Journal of Electroceramics
5
(
2
), pp.
153
182
.
13.
Yakabe
,
H.
, and
Hishinuma
,
M.
, 2000, “
Evaluation of Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753
86
, pp.
423
431
.
14.
Lehnert
,
W.
, and
Meusinger
,
J.
, 2000, “
Modeling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753
87
, pp.
57
63
.
15.
Neufeld
,
P. D.
,
Janzen
,
A. R.
,
Aziz
,
R. A.
, 1972,
J. Chem. Phys.
0021-9606
57
, p.
1100
.
16.
Reid
,
R. C.
, and
Prausnitz
,
J. M.
, 1977,
The Properties of Gases and Liquids
,
Mc-Graw-Hill
, New York.
17.
Chan
,
S. H.
, and
Khor
,
K. A.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
0378-7753
93
,
130
140
.
18.
Curtis
,
C.
, and
Bird
,
R.
, 1999, “
Multicomponent Diffusion
,”
Ind. Eng. Chem. Res.
0888-5885
38
, pp.
2515
2522
.
19.
Bird
,
R.
,
Stewart
,
W.
, and
Lightfoot
,
E.
, 2002,
Transport Phenomena
,
John Wiley & Sons
, New York.
20.
Tanner
,
C. W.
,
Funf
,
K. Z.
, and
Virkar
,
A. V.
, 1997,
J. Electrochem. Soc.
0013-4651
144
(
1
), pp.
21
30
.
21.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
, “
Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cells
,”
Solid Oxide Fuel Cells (SOFC VIII)
, Vol. 2003-7,
Electrochemical Society Proceedings
.
22.
Berger
,
C.
, 1968,
Handbook of Fuel Cell Technology
,
Prentice-Hall
, Englewood Cliffs, New Jersey.
23.
Virkar
,
A. V.
,
Chen
,
J.
, and
Tanner
,
C. W.
, 2000, “
The Role of Electrode Microstructure on Activation and Concentration Polarization in Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738
131
, pp.
189
198
.
24.
Du
,
Y. H.
, and
Sammes
,
N.
, 2003, “
Fabrication and Performance of LaGaO3-Based Tubular SOFC’s
,”
Ionics
0947-7047
9
, pp.
7
14
.
You do not currently have access to this content.