INDEX

Page numbers followed by f and t indicate figures and tables, respectively.

A
Acceleration
block, 534
defined, 534
head, 171–172
typical, 534
Accumulator, flow transients of, 344–346, 345f
Acidity/alkalinity (pH)
pump selection and, 23
Acoustic boundary conditions
and resonance, 488–490, 488f–490f
acoustic resonance condition of pipingnetwork, 488–490, 488f–490f
Acoustic transfer matrix
for centrifugal compressor, 479–480, 479f
for pipe element, 464–471, 466f, 471f
damping (attenuation) on, 468–471, 471f
mean flow on acoustic TM for pipe element, 467–468
for throttle element, 472–478, 473f, 474f, 475f, 476f, 477f
ball valve, 476, 476f, 477f, 478f
globe valve, 476–478
orifice plate, 475, 475f
for a volume element, 478–479, 478f
Active bearings, 560–561
Adaptive control algorithms, 223
Additives, operational hazards of, 9
Adiabatic compression, 243, 255
Adjustments, compressor performance, 272–274
Aeroderivative gas turbines, 280, 281–282, 291–292
Affinity laws, 148, 149f
Aftercooler, defined, 198
Air compressor surge, 286–287
Air cooled heat exchanges, 70
Air coolers, 70
Air intake system, gas turbines, 286
Alkalinity
pump selection and, 23
American Gear Manufacturers Association (AGMA), 329–330
American Petroleum Institute (API), 97
API 541, 310
API 546, 310
API 614, 194, 203, 233, 291
API 616, 305
API 617, 209, 228, 233, 261
API 618, 201, 203, 254
API 671, 329
American Petroleum Institute (API) gravity, SG and, 133–136
American petroleum Institute (API) 520) standards, 526–527
American Society of Mechanical Engineers (ASME), 97
Ampliflow, 218
Analytical pipe model, 449–450
Anchor bolts, 183, 184
Anechoic (non-reflective), acoustic boundary conditions, 489
ANSI/HI 9.6.8, 516–517
ANSI pressure limitations, pipeline design and, 21, 34
Anti-icing systems, 288–289
AP-42 emission factors, 613
API, see American Petroleum Institute (API)
API 610, 516–517, 517f
API 688 document, 516
API 618 reciprocating compressors, 516
API 674/675 reciprocating pumps, 516
API 619 rotary (screw) compressors, 516
API 676 rotary (progressive cavity) pumps, 516
API RP 14E recommendations (pipe sizing), 39
API 618 Standard, 502–510, 503f
acoustic shaking forces, 504
compressor mechanical model analysis, 504
Design Approach 2, 503, 503f
Design Approach 3, 503–504
Design Approach (DA) 1, 503, 503f
Design Approach 1 pulsation limits, 507–509
earlier version (4th edition), 502
general criteria, 505–507
maximum allowable non-resonant shaking forces, 509–510
mechanical analysis, 502–503
piping system analysis, 504–505
pulsation analysis, 502–503
pulsation guidelines, 505
purpose of, 502
separation margin, 504
for slow and medium-speed machines, 502
API 674 Standard, 510–512
Application torque, calculation, 324
ASME, see American Society of Mechanical Engineers (ASME)
ASME Power Test Code PTC 10, 228, 261

Aspects, compressor performance, 237–247
behavior, 243–244
efficiency, 244–245
flow, 245
gas properties, 237, 238–243
compressibility and molecular weight, 238–240
EOS, 241–243
ideal gas laws, 237, 238
ratio of specific heats, 240–241
general, 237
head, 244
nomenclature, 237, 238
power, 245–247

Asymmetric series compressors with spare unit, 79–80, 81f

Attenuation
acoustic transfer matrix for pipe element and, 468–471
Aude equation, 24
Automated surge relief installation, 60–61
Auxiliary system level control, 92
Axial diffusion coefficient, 46
Axial-flow compressor, 285
Axial-flow pumps, 106
Axial split (casing), 206
Axial thrust, calculation of, 208, 209

B
Balanced Noise Criterion (NCB) curves, 598
Balance drum defined, 208
forces, 208, 209f
Balance piston defined, 208
forces, 208, 209f
Balancing, rotordynamics and, 561–563, 562f–563f
Ball valves, 44
acoustic transfer matrix for throttle element, 476, 476f, 477f, 478f
Barrel-type centrifugal compressors, 203, 204f
Batch contamination in liquid pipelines, 45
Beam-type compressors, wet seals for, 214
Bearings active, 560–561
centrifugal compressors, 209–211
externally pressurized, 560
gas turbines, 289–291
IGCC, 233–234
magnetic, 560–561
pressurized oil, 560–561
reciprocating compressors, 193, 194–196
regular internally-pressurized fluid film, 560
rotordynamics and, 560–561
Bed section, of compressor frame, 182–183
Behavior, compressor, 243–244
Benedict-Webb-Rubin equations, 228
Benedict-Webb-Rubin-Starling (BWR) equation, 242
Bently Pressurized (orifice) Bearing Company, 211
Bingham fluids, 21, 22f
Block acceleration, 534
Blockage, degradation mechanism, 265
Blowdown noise suppression during, 496–499, 497f–499f
Blowdown, station and gas pipeline, 444–457, 445f
comparison between models, 450–453
non-isothermal blowdown, 453–457
pipe model, 449–450
volume model, 446–449
Booster compression, 6
Booster pumps, 54
Boundary conditions, 342–346
flow transients across other elements, 343–344, 343f–344f
of an accumulator, 344–346, 345f
Bowtie diagrams, 8
Boyle’s law, 238, 243
Brake horsepower, compressor, 250
Brayton cycle, 302, 303f
Broadband shock-associated noise, 603
Buildings, compressor station, 95
Bureau of Land Management, 97
Bypass check valve, 36, 43

C
Canadian Energy Pipeline Association (CEPA), 7
CAN/CSA Z662 (safety standards), 7
CAN/CSA Z767-17 (safety standards), 7
Capacity compressors, 245
control, reciprocating compressors, 187, 188f, 189f
reciprocating compressors, 247–249
Carbon monoxide (CO), formation, 295
Cascading effect, 70
Case studies and examples ethylene pump, 365, 367–369, 367f–368f
pulsation and vibration analysis multiple source pulsation, 521–523, 522f
pulsation generated by a reciprocating compressor, 523–525, 523f–525f
single-source pulsation, 520–521, 520f–521f
styrene transfer system, 361–365, 361f–362f, 363f, 364f–365f, 366f
Case study pulsation examples, 518–525
multiple source pulsation, 521–523, 522f
high-flow case, 523
intermediate-flow case, 523
low-flow case, 523
pulsation generated by a reciprocating compressor, 523–525, 523f–525f
single-source pulsation, 520–521, 520f–521f
Casing (axial split), 206

Downloaded from https://asmedigitalcollection.asme.org/ebooks/chapter-pdf/2809149/861783_bm.pdf by guest on 02 April 2020
Causes (bowtie diagram), 8
Cavitation, 499, 500f
Cavitation and column separation, 358–361
overview, 358–359
steam condensation-induced water hammer, 359–361, 360f
Cavitation in centrifugal pumps, 154–160
damage due, 154–155
effects of, 155
formation, 155, 157f
NPSH, 157–158
NPSHA, 158, 159f
NPSHR, 158–159, 160f
phenomenon, 154–155
reducing, 155
CEM measurements, 613–615, 614f, 615f
Centaur, 281
Centrifugal booster pumps, 105f
Centrifugal compression systems blowdown, see Blowdown, station and gas pipeline check valve, see Check valve dynamics
dynamic instabilities, fundamentals of, 372–386
complex compression systems, 375–379, 378f, 379f
control dynamics, 379–381, 381f
simple compression systems, 372–374, 372f–373f, 374f
solution techniques, 382–386, 382f–383f, 384f, 385f, 386f
ESD, see Emergency shutdown (ESD)
overview, 371–372
relief valve, see Relief valve dynamics
Centrifugal compressors, 203–229
acoustic transfer matrix for, 479–480, 479f
advantages and disadvantages of, 334
bearings, 209–211
controls and monitoring, 220–223
design(s)
genral, 203–205, 206f
standards, 228–229
flow (capacity), 245
forced vibration in, 551
internals and sealing, 205–209
lubrication system, 211, 213
mechanical analysis of piping systems, 584–588, 586f, 587f
multi-stage, 551
performance, 254–267
degradation monitoring, 264–266, 267f
dynamic performance characteristics, 254–260
general, 254
mixture composition on, 262–264
selection and sizing, 260–261
testing, 261–262
physical operation, 223–228
diffuser, 228
fluid properties, effect of, 228
impellers, 224–227
performance characteristics, 223–224
pressure–volume characteristic, 270, 271f
rotodynamics and, 551–552
sealing system, 213–220
dry gas seals, 216–219
emerging gas seal technology, 220
general, 213–214
wet oil seals, 214–215
self-excited vibration in, 551
subsynchronous vibration in, 551
Centrifugal impeller design theory, 141–143
Centrifugal pumps, 104–118; see also Pump(s)
advantages, 100
axial-flow pump, 106
centrifugal action, 108
components, 108
configuration, 107
design, 106–109, 110f, 111f
impeller, 107–109
functioning of, 106–107
limits, 163–166
minimum flow, 163
re-circulation, 164–166
temperature rise, 163–164
mechanical seals, 109–114, 115f
mixed-flow pumps, 106
modifications, 150, 151f–153f
nozzle loading, 114–118
operational hazards of, 9
performance of
affinity laws, 148, 149f
cavitation in, 154–160
centrifugal impeller design theory, 141–143
coverage chart, 138
impeller curve characteristics, 145–147
impeller selection, 138–140
pipeline-pump operational control, 148–150
pump performance curves, 137–138, 139f
pump power and, 150
radial flow pumps, 105, 106f
rotodynamics and, 553–554
specific speed, 143–145, 146f
system curve, 140, 141f
types, 104–106
viscous liquids and, 160–163
Centrifugal pumps, dynamic behavior, 346–353
dynamic equation, 348, 351–352
full pump characteristics, 347–348, 349f, 350t–351t
homologous relations, 347
pump and motor inertias, 352–355, 352f, 353f
CEPA, see Canadian Energy Pipe-line Association (CEPA)
Characteristic curves, pump, 145–147
Characteristics
centrifugal compressors, dynamic performance, 254–260
basic performance curves, 254–257
fan laws, 257–258
limits, 258–260
gas turbine performance, 299, 300, 301, 302f, 303f
system, 267–276
adjustments, 272–274
comparison, 270, 271f
curves, 267–270
genral, 267
operating considerations, 274–276
operating limitations, 271–272
Charles’ law, 238
Chattering, pressure relief valves (PRV), 526
Check valve dynamics, 411–427
compression recycle system and, 425–427, 426f, 428f
counterbalance on maximum reverse velocity, 421–422, 422f
overview, 411–413
piston type check valves, 422–424, 422f
swing type check valves
description, 411–412, 412f
dynamic behavior of, 413–417, 414f, 416f–417f
slamming characteristics, 417–421
wafer type check valves, 424–425, 424f
Chip detectors, 292
Choke, 259, 260, 272
Circular casing pump, 106
CleanPac™, 218
Clearance volume control, 187
Closed, acoustic boundary conditions, 482–485
Codes and standards, compressor, 96–97
Combustion air/lube oil-water cooling, 70
Combustion engines, internal, 320–323
advantages and disadvantages of, 333–334
design, 320–322
general, 320
integral engine/compressors, 322–323
Compatibility between driver and driven equipment, 331, 332, 333, 334
with existing equipment, 331, 332, 334
Complex compression systems, 375–379, 378f, 379f
Component matching, defined, 302
Compressibility correction, 250
gases, 238–240
Compression booster, 6
dependability for, 14–15
equipment, types, 75–76
field, 6
gas pipeline and, 5–6, 65
gas recovery, 5
gas storage, 6
ignition engines, 320
interchange, 6
lateral, 6
versus looping, gas pipelines, 66f, 69–70
performance curve, 72f
recycle system, check valves
effect on, 425–427, 426f, 428f
requirements, 85–86
Compressor Equipment Health Monitoring (CEHM) system, 620
Compressors centrifugal, see Centrifugal compressors
classification, 179, 180f
cost of operation, 73–74
design and operation, see Design and operation
drivers, see Drivers hermetic, 315–317
IGCC, 231–234
mechanical model analysis, 504, 515f
performance, see Performance pipeline, overview, 179
reciprocating, see Reciprocating compressors
screw, 229–231
Compressors arranged in series, recycle system around, 409–410, 409f, 410f–411f
Compressor stations
buildings and weather protection, 95
codes and standards, 96–97
compression equipment, types, 75–76
compressor requirements, 85–86
cost of ownership, 74
driver requirements, 86–87
environmental considerations, 80
fire, 9–10
layout, 87, 88f
NPV analysis (case study), 77–78
number of units, 76–77
operating considerations, 74–75
parallel arrangement, 76
piping layout, 87, 89–90
“power” backup, 79
predictions of noise levels from, 601–607
scrubbers and filters, 90–91
series arrangement, 76
series-parallel arrangement, 76
spacing, 69
standby units, 78–80, 81f
unit auxiliary systems and, 92
unit control systems and, 92–95
usage scenario for pipeline stations (case study), 81–85
Computational Fluid Dynamics (CFD) analysis, 626
Configuration, pump, see Pump configurations
Consequences (bowtie diagram), 8f, 9
Constant area pipes, governing equation for, 339–341, 340t–341t
assumptions, 339
Contaminants, in liquid fuels, 293
Contamination in liquid pipelines, 44–52
DNV erosion model, 48, 49f, 49t
Zhang et al. erosion model, 48–50
Control dynamics, 379–381, 381f
Controlled engines, 613
Control system centrifugal compressors, 220–223
reciprocating compressors, 196
Conversion factors, for pumps, 175–177
Coolbrook–White equation, 24
Cooling requirements, gas pipelines, 70
Cooper Bessemer GMW family of engines, 322
Cost of compressor operation, 73–74
J-curves graph and, 68
of ownership, compressor station, 74
pipeline design and, 21–22
Counter-swirl position, guide vanes, 273
Coupling(s), 323–330, 558–560, 559f, 560f
coupling, 324
diaphragm, 325, 326f
disc, 325, 326f
flexible, 325, 326f
fluid, 314, 315f
functions, 323
gear, 325, 558
general purpose, 323
lubricated gear, 325
much reduced deflection for torsionally soft, 560f
selection, 323, 324–325
soft
elastomeric, 327
steel-spring, 327
special purpose, 324
standards, 329–330
too stiff for motor/compressor set, 558
torsional analysis, 558
torsional vibration problem in reciprocating compressor installation, case study, 327, 328, 329f
Coverage chart, centrifugal, 138
Crank end (CE) cycle, 198
Critical speeds, 272
Cross-hole seismic testing, 514
Crude oil, operational hazards of, 9
Curves
performance, centrifugal compressors, 254–257
system characteristic, 267–270
Cycling, pressure relief valves (PRV), 525
Cyclone scrubber, 91f
Cylinders, compressor, 183, 185–187
D
Damage risk criteria (DRC), 592, 595
Dampeners, 413
in liquid systems, 500
Damping
acoustic transfer matrix for pipe element and, 468–471, 471f
darcy equation, 24–25
day–night equivalent level (DNL), 599
DBB, see Double block and bleed capacity (DBB)
Degradation monitoring, centrifugal compressor performance, 264–266, 267f
Density, pipeline design and, 21, 22
Dependability, pipeline system characteristics, interrelationship between, 12
concept of, 11–12
framework over the life cycle for pipelines, 14f
functional and non-functional requirements, 12, 13f
for pumping and compression, 14–15
RAM models, 15–16, 16f, 17f
value of, 12–14
Design and operation, 179–234
centrifugal compressors, 203–229
bearings, 209–211
controls and monitoring, 220–223
diffuser, 228
fluid properties, effect of, 228
general design, 203–205, 206f
impellers, 224–227
internals and sealing, 205–209
lubrication system, 211, 213
performance characteristics, 223–224
physical operation, 223–228
sealing system, 213–220
standards, 228–229
IGCC, 231–234
bearings, seals and gears, 233–234
design, 231–233
overview, 179, 180f
reciprocating compressors, 179–203
bearings and lubrication systems, 193, 194–196
capacity (flow) control, 187, 188f, 189f
considerations, 203
coupling system, 196
gas cooling, 198
general design, 179–181
monitoring system, 197
optimization, 200–201
packings, 193, 194f
physical operation, 198–200
rod loading, 201–202
running gear, 181, 182–183
start-up and shutdown, 197
valves, 187, 189–192, 193f
screw compressors, 229–231
design, 229, 230f
operation, 230–231
Design(s)
centrifugal pump, 106–109, 110f, 111f
coupling system, 196
diesel engines, 320–322
liquid pipeline systems, 19–28
Design standards
centrifugal compressors, 228–229
gas turbines, 283–286
internal combustion engines, 320–322
differential pressure control, dry gas seals, 217
diffuser, centrifugal compressors, 228
diffuser pump, 106
digital no-flow timer (DNFT) switch, 196
dilatant fluids, 21, 22f
dilution, 135
dimensional analysis, performance of centrifugal compressors, 260
dimensionless variables, centrifugal pump, 347
direct-acting (steam) pump type, 99
disc couplings, 325, 326f
Discharge piping for reciprocating pumps, 129
Discharge temperature
  centrifugal compressors, 256
  compressors, 271
  reciprocating compressors, 251
Discharge valve, 187, 189f, 190, 191, 192f
DNV erosion model, 48, 49f, 49t
DNV Recommended Practice RP-O501, erosion rate and, 50–52
Double block and bleed capacity (DBB), 44
Double-suction pump, 106
Dresser-Rand Datum C hermetic “compact” compressor, 316–317
Drip proof, 310
Driver and driven equipment unit control, 92
Driver operating characteristics, 86–87
Drivers, compressor, 279–335
couplings, 323–330
  elastomeric soft, 327
  flexible, 325, 326f
  functions, 323
  gear, 325
  selection, 323, 324–325
  standards, 329–330
  steel-spring soft, 327
torsional vibration problem in reciprocating compressor installation, case study, 327, 328, 329f
drivers and driven equipment, comparison, 330–335
centrifugal compressors, advantages and disadvantages of, 334
electric motors, advantages and disadvantages of, 332–333
gas turbines, advantages and disadvantages of, 330–332
general factors, 330
internal combustion engines, advantages and disadvantages of, 333–334
reciprocating compressors, advantages and disadvantages of, 335
electric motors, 307–319
design considerations, 310, 311f
economics, 317–319
general, 307
hermetic compressors, 315–317
types, 307–310
variable speed drives, 310, 311–315
gas turbines, 280–307
advantages, 284
aeroderivative gas turbine
  lube oil system, 291–292
air compressor surge, 286–287
air intake system, 286
anti-icing systems, 288–289
bearings, 289–291
design, 283–286
design standard, 305
exhaust system, 289
fuel system, 292, 293–299
industrial gas turbine lube oil system, 292, 293f
performance, 299, 300–305
types, 280–283
variable compressor geometry, 287–288
waste heat recovery, 306–307
internal combustion engines, 320–323
design, 320–322
general, 320
integral engine/compressors, 322–323
overview, 279–280
Drivers and driven equipment, comparison, 330–335
centrifugal compressors, advantages and disadvantages of, 334
electric motors, advantages and disadvantages of, 332–333
gas turbines, advantages and disadvantages of, 330–332
general factors, 330
internal combustion engines, advantages and disadvantages of, 333–334
reciprocating compressors, advantages and disadvantages of, 335
reciprocating compressors, advantages and disadvantages of, 335
Drooping characteristic curve, 146, 147f
Dry-gas seals, 216–219
leakage rates, 625
recovering vent gas loss from, 624–634
Dry low emissions (DLE), 296
Dry low NOx (DLN), 296–297
Dual fuel system, 299, 301f
Duplex reciprocating pumps, 122f
Dynamic actuator/positioner, 380
Dynamic behavior, pumping systems, 339–369
boundary conditions, 342–346
cavitation and column separation, 358–361
centrifugal pumps, see Centrifugal pumps
details and examples, 361–369
four quadrant charts, 354–357, 355f, 357f
governing equation for constant area pipes, 339–341, 340t–341t
overview, 339
solution techniques, 341–342, 342f
water hammer, 357–358
Dynamic Characteristic Curve (DCC), 414
Dynamic equation, centrifugal pumps, 348, 351–352
Dynamic forces, by reciprocating compressor, 183–184
Dynamic performance characteristics, centrifugal compressors, 254–260
basic performance curves, 254–257
fan laws, 257–258
limits, 258–260
Dynamic pulsation dampener, 125
Economics, driver, 317–319
Effects (bowtie diagram), 8f, 9
Efficiencies
compressor performance, 244–245, 250, 256
thermal, 331, 332, 334
VFD, 314
Elastomeric soft couplings, 327
Elbow
DNV RP O501 erosion model
den for, 50–52
flow distortion and, 41f
Electric compressor drivers versus
gas, 69–70
Electric motors, 307–319
advantages and disadvantages
den of, 332–333
design considerations, 310, 311f
economics, 317–319
general, 307
hermetic compressors, 315–317
types, 307–310
variable speed drives, 310, 311–315
fluid coupling, 314, 315f
VFD, 310, 311–314
Elevation profiles, gas pipeline,
72f
EMD station, 75
Emergency shutdown (ESD), 94, 95f, 386–410
effects of compressor perform-
ance characteristics, 389–393, 389f, 390f, 392f–393f
inertia number, 405–408, 407f–408f, 407t
integrially geared compression
systems, 402–405, 403f, 403t, 404f–405f
recycle system around compres-
sors arranged in series, 409–410, 409f, 410f–411f
rotor inertia on, 393, 394f, 395f
Emerging gas seal technology,
220
Emission calculations (case study),
84–85
Emissions
exhaust, 331, 332, 334
fuel system, 294–297
noise, 331, 332, 334
Enclosures, characteristics, 310
End cover (radial split), 206
Energy Institute, 571
Engine-driven screw compressor,
229, 230f
Engines
capacity curve, 252
controlled, 613
jacket water cooling, 70
uncontrolled, 613
engine, internal combustion,
320–323
advantages and disadvantages
den of, 333–334
design, 320–322
general, 320
integral engine/compressors,
322–323
Enthalpy diagram, for Brayton
cycle, 302, 303f
Entropy diagram, for Brayton
cycle, 302, 303f
“Entropy spots,” 607
Environmental considerations,
compressor station, 80
Environmental issues, 591–593
designing for environmental
requirements, 593
Environmental issues,
compressor and pump
stations
capturing vent gas from dry
gas seals, innovations in,
624–634; see also Supersonic
jectors
noise measurement, 594–607;
see also Noise, compressor
and pump stations
noise criteria limits,
595–600, 597f, 598f, 599f, 600t
noise level parameters,
594–595
predictions of noise levels
from compressor stations,
601–607
NOx emissions from gas turbines,
612–623
overview, 591–593
Environmental Protection Agency,
97
Equations of state (EOS), gas
properties, 241–243
Erosion, impeller, 261
Erosion model
DNV model, 48, 49f, 49t
DNV Recommended Practice
RP-O501, 50–52
Zhang et al., 48–50
ESD, see Emergency shutdown
(ESD)
Ethylene pump, 365, 367–369,
367f–368f
Euler’s theory, 142
Excitation mechanisms
mechanical analysis of piping
systems, 563–564, 564f
Exhaust emissions, 331, 332, 334
Exhaust system, gas turbines, 289
Expansion chambers, 490–492,
491f, 492f, 524f, 525
Expenditures, operating, 1
Explosion proof, 310
Externally pressured bearings,
560
Externally Pressurized Porous
(EPP) Gas Bearing Technology,
220
F
Facility Integrity Management
Program (FIMP), 7
Failure modes and effects analy-
sis, 8
Fan laws, centrifugal compressors,
257–258
Fast start-up valve positions, 37–38
Fault tree analysis, 8
Field compression, 6
Field tests/testing
gas turbine performance, 305
relief valve dynamics, 441–444,
442f, 443f–444f
Filters, compressor station, 90–91
FIMP, see Facility Integrity Man-
agement Program (FIMP)
“Fin-fan” coolers, 70
1st stage supersonic ejector,
625–632, 625f, 626f, 627f,
630f, 631f, 632
Fitting limitations, 34
Flange–flange coupling connection,
324
Flange–hub coupling connection,
324
Flashing, 499
Flat characteristic curve, 146, 147f
Flexible couplings, 325, 326f
Floating ring oil seals, 214
Flow for compressors, 245
reciprocating compressors, 247–249
Flow control
dry gas seals, 217
reciprocating compressors, 187, 188f, 189f
Flow distortion, double-suction pump, 41f
Flow-generated pulsation from throttling elements, 480–482, 481f–482f
Flow-generated single-tone pulsation from closed end side branch, 482–485, 483f–484f
Flow transients across other elements, 343–344, 343f–344f
of an accumulator, 344–346, 345f
Fluid coupling, 314, 315f
Fluid hammer, 314, 315f
Fluid properties, effect of, 228
Fluttering, pressure relief valves (PRV), 525–526
Forced response analysis, 572–576
Forced vibration, 551
Force-feed lubrication system, 196
Fouling, 261, 265
Foundations, compressor, 183–184
Four quadrant charts, pump, 354–357, 355f, 357f
Frame, reciprocating compressors, 183–187
integral compressor, 185
separable compressor, 184–185
Free turbine, defined, 283
Frequency drive, VFD, 310, 311–314
Friction head
liquid pipeline systems, 24
Fuel system, 292, 293–299
dual, 299, 301f
emissions, 294–297
liquid, 299, 300f
LNG, 297
natural gas, 297–299
types, 292, 293–294
Fuel usage (case study), 81–84
Full-scale factory testing, centrifugal compressors, 261–262
Functional requirements, dependability, 12, 13f
Functions, coupling, 323
Gas coolers, 91, 92f
Gas cooling, reciprocating compressors, 198
Gas Machinery Research Council, 571
Gas pipeline systems, 4–6
booster compression, 6
buildings and weather protection, 95
codes and standards, 96–97
components of, 5
compression facilities and, 5–6
compressor station
configuration
compression equipment, types, 75–76
compressor requirements, 85–86
driver requirements, 86–87
environmental considerations, 80
NPV analysis (case study), 77–78
number of units, 76–77
operating considerations, 74–75
parallel arrangement, 76
series arrangement, 76
series-parallel arrangement, 76
standby units, 78–80, 81f
usage scenario for pipeline stations (case study), 81–85
compressor station spacing, 69
cooling requirements, 70
cost of compressor operation, 73–74
field compression, 6
gas coolers, 91, 92f
gas recovery compression, 5
gas storage compression, 6
gas versus electric compressor drivers, 69–70
hydraulics, 65, 66f
hydraulic simulation, 70–73
hydraulics profile, 71f
interchange compression, 6
lateral compression, 6
looping versus compression, 66f, 69–70
network, 70, 71f
optimization process, 65–69
alternatives, 68–69
considerations, 65–66, 69
pressure regulation methods, 65
safety systems and environmental controls, 96
scrubbers and filters, 90–91
station and unit auxiliary systems, 92
station and unit control systems, 92–95
station layout, 87, 88f
station piping layout, 87, 89–90
transmission, 6
Gas properties, for compression performance, 237, 238–243
compressibility and molecular weight, 238–240
EOS, 241–243
ideal gas laws, 237, 238
ratio of specific heats, 240–241
Gas recovery compression, 5
Gas storage compression, 6
Gas turbines, 280–307, 554
advantages and disadvantages of, 284, 330–332
aeroderivative, 280, 281–282, 291–292
air compressor surge, 286–287
air intake system, 286
anti-icing systems, 288–289
basic design, 283–286
bearings, 289–291
design standard, 305
exhaust system, 289
fuel system, 292, 293–299
dual, 299, 301f
emissions, 294–297
liquid, 299, 300f
LNG, 297
natural gas, 297–299
types, 292, 293–294

Downloaded from https://asmedigitalcollection.asme.org/model/14070054 by guest on 02 April 2020
industrial gas turbine lube oil system, 292, 293f
NOx emissions from, 612–623
performance, 299, 300–305
calculations, 302, 303f, 304–305
characteristics, 299, 300, 301, 302f, 303f
field testing, 305
rotordynamics and, 554
types, 280–283
variable compressor geometry, 287–288
waste heat recovery, 306–307
GasTurb™, 302
Gearboxes, 558–560, 559f, 560f
Gear(s)
couplings, 325, 558
IGCC, 233–234
General criteria, API 618 Standard, 505–507
General Electric, 280, 281, 282f
Geometry, variable compressor, 287–288
Globe valve
acoustic transfer matrix for throttle element, 476–478
GMRC design guidelines for high-speed reciprocating compressor packages for natural gas transmission & storage applications, 513–516
Governing equation for constant area pipes, 339–341, 340t–341t
Groupe Européen de Recherches Gazières (GERG) EOS, 242–243
Guide vanes
centrifugal compressors, 254–255
counter-swirl position, 273
IGVs, 233, 287, 288
pre-swirl position, 273

H
Harmonic filters, 311
Hazard (bowtie diagram), 8
Hazard and operability (HAZOP) studies, 8
Hazardous chemicals, safety regulations, 7
Hazen–Williams equation, 24
HAZOP, see Hazard and operability (HAZOP) studies
Head centrifugal performance, 255
defined, 244
Head coefficient, centrifugal pumps, 348, 349f, 350t–351t
Head curve, liquid pipeline systems, 24–26
Head end (HE) cycle, 198, 200
Header piping design, 42–44
Heat recovery oil heater (HROH), 306, 307
Helical lobe rotary compressor, 229–231
design, 229, 230f
operation, 230–231
Helmholtz free energy, 242–243
Helmholtz resonators, 463, 490–492, 492f, 500, 502
Hermetic compressors, 10, 315–317
Hetzel equation, 24
High pressure gas cooling, 70
High-pressure seal oil, 214
High speed oil free intelligent motorcompressor (HOFIM), 315–316
History, pump, 100–103
Homologous relations, centrifugal pumps, 347
Horizontal pumps, 106, 115–117
Hub–hub coupling connection, 324
Hydraulic accumulator, 344–346
Hydraulics
gas pipeline, 65, 66f
liquid pipeline, 19, 20f
Hydraulic simulation, 70–73
for assessment, 72–73
Hydraulics profile, gas pipeline, 71f
Hydrodynamic bearing, 211, 212f

I
Ideal gas laws, 237, 238
IEC, see International Electrotechnical Commission (IEC)
IGCC (integrally geared centrifugal compressor), 231–234
bearings, seals and gears, 233–234
design, 231–233
IGVs (inlet guide vanes), 233, 287, 288
Impeller, centrifugal pumps change, 150, 151f
curve characteristics, 145–147
design, 107–109
design theory, 141–143
destroyed by cavitation, 154f
selection, 138–140
specific speed of, 144–145
suction specific speed, 165
under-filing and over-filing, 150, 152f
volute chipping, 150, 153f
volute inserts, 150, 153f
Impeller(s)
centrifugal compressors, 206, 224–227
erosion, 261
Implosion, 154
Incipient surge, defined, 221
Induction motors, 307–308, 310
Industrial compression system, dynamic instabilities in, 394, 395–402, 396f, 397f, 398f, 399f, 400f–401f, 401t, 402f
Industrial gas turbines, 280, 292, 293f
Inertia
centrifugal pumps, 352–353, 352f, 353f
rotor, on ESD, 393, 394f, 395f
Inertia number, 405–408, 407f–408f, 407t
Injected seal oil, 214, 215
Inlet guide vanes (IGVs), 233, 287, 288
Instrumentation, for centrifugal compressor, 262
Intake system, air, 286
Integral engine/compressors, 322–323
Integrally geared centrifugal compressor (IGCC), 231–234
bearings, seals and gears, 233–234
design, 231–233
Integrally-geared compression systems, 402–405, 403f, 403t, 404f–405f
Integral reciprocating compressor frame, 185
running gear, 181, 182f
Integrated compressor line (ICL), 203, 205f
Intensifier, defined, 218
Interchange compression, 6
Intercooler, defined, 198
Internal combustion engines, 320–323
advantages and disadvantages of, 333–334
design, 320–322
general, 320
integral engine/compressors, 322–323
Internal return rate (IRR), 312, 314
Internals, centrifugal compressors, 205–209
International Electrotechnical Commission (IEC), 11, 97
International Organization for Standardization (ISO), 11, 97
Inverse reduced temperature, defined, 243
Isentropic compression, 243, 244, 255, 256, 264
Isentropic efficiency, 244, 250
ISO, see International Organization for Standardization (ISO)
Isothermal compression, 244
J
J-curves graph, 68
Joukowsky equation, 55
Joule-Thompson effect, 294
K
Kinetic pumps
family of, 101f
types, 99
L
Labyrinth seals, 206, 214, 217
Lateral compression, 6
Lateral rotordynamics, 537–540, 538f–540f
LCC, see Long-term life cycle costing (LCC)
Length, cost of a pipeline and, 1
Life Cycle Cost analysis, 314
Limits in performance, centrifugal compressors, 258–260
Liquid fuel system, 299, 300f
Liquid pipeline systems, 2–4
configuration, 28–37
contamination in, 44–52
definitions, 3, 4f
design, 19–28
considerations for system curves, 27–28
curve development example, 26–27
head curve, 24–26
hydraulics, 19, 20f
pipe size and selection, 19–24
piping system, 34–44
pressure surges in, 55–61
pumps for, 99–100
pump station piping design, see Piping design, pump station
terminal design, 52–61
unique aspect of, 4
Liquids
effects of vapor voids in, 500, 500f
operational hazards of, 9
vapor voids in, 500, 501f
Liquid vs. gas applications, 499–502
cavitation, 499, 500f
effects of vapor voids in liquids, 500, 500f
flashing, 499
pulsation filters (dampeners) in liquid systems, 500–502
speed of sound in liquids piping, 499–500, 501f
Liquified natural gas (LNG), 297
Loading, rod, 201–202, 271
London Bridge Waterworks, 103
Long-term life cycle costing (LCC), 15
Looping versus compression, gas pipelines, 66f, 69–70
LOPC, see Loss of primary containment (LOPC)
Loss of primary containment (LOPC), 6
Lower heating value (LHV), 294
Low-pass filter, 381
Lube oil cooling, 70
Lube oil-water cooling, 70
Lubricated/flooded screw compressor, 229, 230f
Lubricated gear couplings, 325
Lubrication regimes, centrifugal pumps, 111, 112f
Lubrication systems
centrifugal compressors, 211, 213
coolers, lube oil, 213
gas turbines, 289–292
aeroderivative, 291–292
industrial, 292, 293f
reciprocating compressors, 193, 194–196
M
Mach number, 260
Magnetic bearings, 211, 212f, 560–561
MAOP, see Maximum allowable operating pressure for the pipeline (MAOP)
Maps, performance centrifugal compressor, 255–257
reciprocating compressor, 251–254
Mars, 281
Matching, component, 302
Match point, defined, 301
Materials, for compressor cylinders, 185, 186
Maximum allowable operating pressure for the pipeline (MAOP), 93
Maximum allowable shaking forces, API 618 Standard, 509–510
Maximum Operating Pressure (MOP) limits, 55, 57
Mean flow on acoustic TM for pipe element, 467–468
Mean time between repairs (MTBR), 314
Measurement units and conversion factors, 175–177
Mechanical analysis, 533–588
API 618 Standard, 502–503, 503f, 504
centrifugal compressors, 584–588, 586f, 587f
overview, 533
of piping systems, 563–588
adding damping to mechanically resonant systems, 577–583, 577f, 578f, 579, 580f, 582f
centrifugal compressors, 584–588, 586f, 587f
excitation mechanisms, 563–564, 564f
forced response analysis, 572–576
small-bore attachments, 569–572
thermal analysis, 583–584
unbalanced forces, 566–569, 568f
vibration and stress, 564–566, 565f, 566f, 567f
of rotating equipment, 536–563; see also Rotordynamics
balancing, 561–563, 562f–563f
general, 536–537
lateral rotordynamics, 537–540, 538f–540f
specific machinery considerations for rotordynamics, 551–561
stability, 540–541, 541f
torsional rotordynamics, 541–551, 542f–544f, 546f, 548f
vibration, basic aspects of, 533–536, 534f, 535f
Mechanical dry seals, 216, 217
Mechanical efficiency, 250
Mechanical hazards, 10–11
Mechanical natural frequency (MNF), 535–536, 535f–536f
Mechanical resonance
time, 535–536, 535f–536f
Mechanical seals, centrifugal pumps, 109–114, 115f
application chart for, 112–113, 115f
basic flush plans for, 113
equilibrium between forces for, 111, 113f
lubrication regimes, 111, 112f
materials used, 111, 114f
pressure and temperature effects, 111, 113f
pressures apply to, 110
pusher type of, 111, 112f
tuning, 111
Metallurgically important materials, 111, 114f
Metallic element couplings, 325, 326f
Methane, Wobbe index for, 294
Mechanical efficiency, 250
Mechanical hazards, 10–11
Mechanical natural frequency (MNF), 535–536, 535f–536f
Mechanical resonance
time, 535–536, 535f–536f
Mechanical seals, centrifugal pumps, 109–114, 115f
application chart for, 112–113, 115f
basic flush plans for, 113
Net positive inlet pressure (NPIP) for reciprocating pump, 172
Net Positive Inlet Pressure Available (NPIPA)
for reciprocating pump, 173
Net Positive Inlet Pressure Required (NPIPBR)
for reciprocating pump, 173
for rotary pump, 170
Net Positive Suction Head (NPSH), 157–158
breakdown curves, 160f
Net Positive Suction Head Available (NPSHA), 158, 159f
Net Positive Suction Head Required (NPSHR), 158–159, 160f
Net present values (NPVs), 74, 210, 312, 314, 318f, 319f
analysis (case study), 77–78
Network, gas pipeline, 70, 71f
Newton-Raphson method, 379
Newtonian fluids, 21
Newton-Raphson method, 379
Nitrogen, surge relief valves, 59, 60f
Nitrogen oxides, formation, 294–295
Noise, compressor and pump stations
noise criteria limits, 595–600, 597t, 598f, 599f, 600t
noise level parameters, 594–595
predictions, compressor stations, 601–607
survey, 608–612
noise mapping methodology, 608–610, 609f, 610f
Noise criteria (NC)
index, 595, 598
limits, 595–600, 597t, 598f, 599f, 600f, 600t
Noise emissions, 331, 332, 334
Noise level parameters, 594–595
Noise measurement, 594–607
noise criteria limits, 595–600, 597t, 598f, 599f, 600t
Net positive inlet pressure (NPIP) for reciprocating pump, 172
Net Positive Inlet Pressure Available (NPIPA)
for reciprocating pump, 173
Net Positive Inlet Pressure Required (NPIPBR)
for reciprocating pump, 173
for rotary pump, 170
Net Positive Suction Head (NPSH), 157–158
breakdown curves, 160f
Net Positive Suction Head Available (NPSHA), 158, 159f
Net Positive Suction Head Required (NPSHR), 158–159, 160f
Net present values (NPVs), 74, 210, 312, 314, 318f, 319f
analysis (case study), 77–78
Network, gas pipeline, 70, 71f
Newton-Raphson method, 379
Newtonian fluids, 21
Newton-Raphson method, 379
Nitrogen, surge relief valves, 59, 60f
Nitrogen oxides, formation, 294–295
Noise, compressor and pump stations
noise criteria limits, 595–600, 597t, 598f, 599f, 600t
noise level parameters, 594–595
predictions, compressor stations, 601–607
survey, 608–612
noise mapping methodology, 608–610, 609f, 610f
Noise criteria (NC)
index, 595, 598
limits, 595–600, 597t, 598f, 599f, 600f, 600t
Noise emissions, 331, 332, 334
Noise level parameters, 594–595
Noise measurement, 594–607
noise criteria limits, 595–600, 597t, 598f, 599f, 600t
Net positive inlet pressure (NPIP) for reciprocating pump, 172
Net Positive Inlet Pressure Available (NPIPA)
for reciprocating pump, 173
Net Positive Inlet Pressure Required (NPIPBR)
for reciprocating pump, 173
for rotary pump, 170
Net Positive Suction Head (NPSH), 157–158
breakdown curves, 160f
Net Positive Suction Head Available (NPSHA), 158, 159f
Net Positive Suction Head Required (NPSHR), 158–159, 160f
Net present values (NPVs), 74, 210, 312, 314, 318f, 319f
analysis (case study), 77–78
Network, gas pipeline, 70, 71f
Newton-Raphson method, 379
Newtonian fluids, 21
Newton-Raphson method, 379
Nitrogen, surge relief valves, 59, 60f
Nitrogen oxides, formation, 294–295
Noise, compressor and pump stations
noise criteria limits, 595–600, 597t, 598f, 599f, 600t
noise level parameters, 594–595
predictions, compressor stations, 601–607
survey, 608–612
noise mapping methodology, 608–610, 609f, 610f
Noise criteria (NC)
index, 595, 598
limits, 595–600, 597t, 598f, 599f, 600f, 600t
Noise emissions, 331, 332, 334
Noise level parameters, 594–595
Noise measurement, 594–607
noise criteria limits, 595–600, 597t, 598f, 599f, 600t
noise level parameters, 594–595
predictions of noise levels from compressor stations, 601–607
Noise suppression during blowdown, 496–499, 497f–499f
Noise surveys
example application on a compressor station, 610–612
noise mapping methodology, 608–610, 609f, 610f
Nomenclature for compression performance, 237, 238t
Non-functional requirements, dependability, 12, 13f
Non-isothermal blowdown, 453–457
Non-lubricated/dry screw compressor, 229
Non-Newtonian fluids, 21
Non-overloading characteristic curve, 147
NOVA Gas Transmission system, 209
NOx emissions from gas turbines, 612–623
AP-42 emission factors, 613
CEM measurements, 613–615, 614f, 615f
neural network based PEM models, 615–620, 616f, 617f, 618f, 619f, 620f
PEM implementation, 620–623, 621f–623f
Nozzle loading, centrifugal pump, 114–118
horizontal pumps, 115–117
vertical inline pumps, 116t, 117–118
NPIP, see Net positive inlet pressure (NPIP)
NPIPA, see Net Positive Inlet Pressure Available (NPIPA)
NPIPR, see Net Positive Inlet Pressure Required (NPIPR)
NPSH, see Net Positive Suction Head (NPSH)
NPSHA, see Net Positive Suction Head Available (NPSHA)
NPSHR, see Net Positive Suction Head Required (NPSHR)
NPV, see Net present value (NPV)

Number of units
compressor station configuration, 76–77
liquid pipeline systems, 30–33

O
Occupational Safety and Health Administration (OSHA), 97
Onsite testing, 228
Open, acoustic boundary conditions, 488–490
Operating cost of compressor, 73–74
pipelines, 1
Operating limits, API 618 Standard, 507
Operational hazards, 9–11
Operations, compressors
centrifugal, 223–228
diffuser, 228
fluid properties, effect of, 228
impellers, 224–227
performance characteristics, 223–224
considerations, 274–276
parallel operation, 276
series operation, 275–276
shutdown, 276
startup, 274–275
limitations, 271–272
reciprocating, 198–200
screw, 230–231
Optimization, reciprocating compressors, 200–201
Optimization process, gas pipeline systems, 65–69
alternatives, 68–69
considerations, 65–66, 69
Organic Rankine bottoming cycle, 306
Orifice plate
acoustic transfer matrix for throttle element, 475, 475f
OSHA, see Occupational Safety and Health Administration (OSHA)
OSHA 1910.119 Process safety management, 7
Over-compression discharge pressure, 231
Overhung centrifugal compressor, 203, 204f
Overload, defined, 260
Overloading characteristic curve, 147

P
Packings, reciprocating compressors, 193, 194f
Parallel configuration of compressor for gas compression, 76
pumping piping, 36, 37f
of pumps in liquid pipeline system, 29–30
standby unit, 79, 80f
Parallel operation, compressors, 276
Particle sizes
pump selection and, 23
PCV, see Pressure control valve (PCV)
PEM implementation, 620–623, 621f–623f
Peng-Robinson EOS, 241
Pentane vapor, 307
Percentage of time, 32
Perfect gas law, 237, 238
Perforated tube mufflers, 492, 494f
Performance, pumps, see Pumps, performance of
Performance correction chart, for viscous liquids, 161, 162f
Performance modifications, 150, 151f–153f
Performance(s), compressors, 237–276
basic aspects, 237–247
behavior, 243–244
efficiency, 244–245
flow, 245
gas properties, 237, 238–243
general, 237
head, 244
nomenclature, 237, 238t
power, 245–247
centrifugal compressors, 254–267
characteristics, 223–224
curves, 254–257
degradation monitoring, 264–266, 267f
dynamic performance characteristics, 254–260
general, 254
limits, 258–260
mixture composition on, 262–264
selection and sizing, 260–261
testing, 261–262
gas turbines, 299, 300–305
calculations, 302, 303f, 304–305
characteristics, 299, 300, 301, 302f, 303f
field testing, 305
overview, 237
reciprocating compressors, 247–254
discharge temperature, 251
flow, 247–249
general, 247
maps, 251–254
piston speed, 254
power, 249–251
system characteristics, 267–276
adjustments, 272–274
comparison, 270, 271f
curves, 267–270
general, 267
operating considerations, 274–276
operating limitations, 271–272
Personnel, operational hazards of, 9
Physical operation
centrifugal compressors, 223–228
diffuser, 228
fluid properties, effect of, 228
impellers, 224–227
performance characteristics, 223–224
reciprocating compressors, 198–200
PID controller, 380
Pilot-operated PRVs, 526
Pilot-operated relief valves, 429–434, 430f, 431f
Pipe element
acoustic transfer matrix for, 464–471, 466f, 471f
Pipeline-pump operational control, 148–150
Pipeline systems
advantages, 1
gas, 4–6, 5f; see also Gas pipeline systems
limitations, 1
liquid, 2–4, 3f, 4f; see also Liquid pipeline systems
overview, 1, 2f
process safety, 6–11
relative transportation cost for petroleum products, 2f
safety, 6–17
trends in primary energy consumption, 2f
Pipe model, station and gas pipeline blowdown, 449–450
analytical, 449–450
Pipe size
cost and, 21–22
liquid pipelines, 19–24
piping design and, 39, 41
Piping design, pump station, 34–44
configuration, 34–38
fast start-up valve positions, 37–38
general station design, 34–38
header piping design, 42–44
hydraulic considerations, 41–42
improvements in, 38–39
layout, 39, 40f
objectives, 38–39
parallel arrangement, 36, 37f
physical requirements for, 34
pipe sizing, 39, 41
series arrangement, 36, 40f
series/parallel configuration, 36, 37f
valve selection, 44
Piping system
analysis, 504
station design for reciprocating pumps, 127, 128f
discharge piping, 129
suction piping, 127–128
suction vessel, 129
Piping velocity limitations, 34
Piston, 100
pumps, 122–123
speed, reciprocating compressors, 254
type check valves, dynamics of, 422–424, 422f
Piston displacement (PD), 247
Plate valves, 187, 189f, 190f
Platinum™, 197
Plunger pumps, 121–122, 123f
Pneumatic clearance valve, 187, 188f
Poly-etheretherketone (PEEK), 190
Polytropic compression, 243–244, 255, 256
Poppet valves, 187, 189f, 190, 191f
Positive displacement pumps, 119–129; see also Pump(s)
overview, 99, 100f
performance of
net positive pressures, 172–173
power and efficiency, 169–170
reciprocating pump acceleration head, 171–172
reciprocating pump flow characteristics, 171, 172f
reciprocating pump selection, 173–175
rotary pump performance chart, 167, 168f, 169f
rotary pump slips and clearance, 170
system head curves and rotary pump curve, 170–171
pulsation dampeners, 124–126
reciprocating pumps, 121–124; see also Reciprocating pumps
rotary pumps, 102f, 119–121, 122f; see also Rotary pumps
Power
compressors, 245–247
plunger pumps, 124
range, 331, 332, 333
reciprocating compressors, 249–251
“Power” backup, compressor station, 79
Power Test Code (PTC) 10 test, 228, 261
Power turbines, 554
rotordynamics and, 554
Power usage distribution (case study), 81–83
Predictive Emission Monitoring (PEM) system implementation, 620–623
Preheat correction, 251
Pre-rotation position, for control purposes, 273
Pressure control valve (PCV), 34, 43–44, 213
sudden closure of, 57–58
Pressure head liquid pipeline systems, 24
Pressure limitations, pipeline design and, 21, 34
MOP and, 55
Pressure relief, pipeline design and, 34, 58–61
Pressure relief valves (PRV), 213
American Petroleum Institute (API 520) standards, 526–527
chattering, 526
cycling, 525
example of PRV stability calculations, 529t
fluttering, 525–526
instability criteria of, 525–530
pilot-operated, 526
remote sensing pop-action pilot, 526
spring loaded, 526
Pressure surges in pipelines automated surge relief installation, 60–61
causes of, 55
nitrogen loaded surge relief valves, 59, 60f
pump shutdown and, 56
pump startup and, 55–56
relief measures, 58–61
valve closure and, 56
Pressure–volume characteristics, of compressors, 270, 271f
Pressurized oil bearings, 560–561
Pre-swirl position, guide vanes, 273
Prevention barriers (bowtie diagram), 8
Princess Compressor Station (Alberta, Canada), operational hazards, 10
Probability theory, 30–32
Process safety, 6–11
guidance in API RP1173, 7
hazardous chemicals, 7
operational hazards, 9–11
Process Safety Management (PSM), 6–7
risk assessment, 7–9
Process Safety Management (PSM), 6–7
Pseudo-plastic fluids, 21, 22f
PSM, see Process Safety Management (PSM)
Pulloff torque, defined, 309
Pulsation analysis, API 618 Standard, 502–504, 503f
“Pulsation and Vibration Control in Positive Displacement Machinery Systems for Petroleum, Petrochemical, and Natural Gas Industry Services,” 516
Pulsation attenuation devices, 203
Pulsation dampeners, 124–126
dynamic, 125
suction, 125–126
Pulsation filters (dampeners) in liquid systems, 500–502
Pulsation generated by a reciprocating compressor, 523–525, 523f–525f
Pulsation generation, 480–487, 481f–482f, 483f–484f, 486f–487f
flow-generated pulsation from throttling elements, 480–482, 481f–482f
flow-generated single-tone pulsation from closed end side branch, 482–485, 483f–484f
by reciprocating compressors and pumps, 485–487, 486f–487f
Pulsation guidelines, API 618 Standard, 505
Pulsation suppression, techniques for, 490–499
noise suppression during blowdown, 496–499, 497f–499f
reactive silencers, 490–493, 491f–493f
spoilers for, 493–496, 494f–496f
Pulsation transmission, through piping elements, 463–480
acoustic transfer matrix for centrifugal compressor, 479–480, 479f
for pipe element, 464–471, 466f, 471f
for throttle element, 472–478, 473f, 474t, 475f, 476f, 477f
for a volume element, 478–479, 478f
overview, 463–464
Pulse width modulation, 311
Pump configurations centrifugal pumps, 107
liquid pipeline systems general, 28–29
number of units, 30–33
pumps in parallel, 29–30
pumps in series, 29
pump station configuration, 34–37
Pump four quadrant charts, 354–357, 355f, 357f
Pump head capacity (H-Q) curve, 145–147
Pumping dependability for, 14–15
Pump(s) centrifugal, 9, 100, 104–118; see also Centrifugal pumps
energy conversion and, 99
family, 99–100
history, 100–103
chronologically listed events, 103
kinetic, 99, 101f
for liquid pipeline stations, 99–100
performance curves, 137–138, 139f
positive displacement, 119–129; see also Positive displacement pumps
selection for liquid pipeline system, 19–24
Pumps, performance of, 131–178
API gravity and SG, relationship, 133–136
centrifugal pumps affinity laws, 148, 149f
cavitation in, 154–160
centrifugal impeller design theory, 141–143
coverage chart, 138
impeller curve characteristics, 145–147
impeller selection, 138–140
limits, 163–166
performance modifications, 150, 151f–153f
pipeline-pump operational control, 148–150
pump performance curves, 137–138, 139f
pump power and efficiency, 150
specific speed, 143–145, 146f
system curve, 140, 141f
viscous liquids and, 160–163
measurement units and conversion factors, 175–177
overview, 131
of positive displacement pumps, 167–175
surge in system operation, 166–167
system design standards and, 177–178
system head, 131–133
vs. pipeline system curve
Pump shutdown, pressure surge and, 56
Pump startup, pressure surge and, 55–56
Pump station configuration
general, 28–29
R
Radial flow pumps, 105, 106f
Radial split (end cover), 206
RAM models, see Reliability, Availability and Maintainability (RAM) models
Rankine bottoming cycle, organic, 306
Ratio of specific heats, 240–241
Reactive silencers for pulsation suppression, 490–493, 491f–493f
Reciprocating compressors, 179–203
advantages and disadvantages of, 335
bearings and lubrication systems, 193, 194–196
capacity (flow) control, 187, 188f, 189f
control system, 196
design considerations, 203
general, 179–181
driven by VFD-controlled motors, 555–558
frame and cylinders, 183–187
cylinders, 185–187
foundations, 183–184
integral compressor frame, 185
separable compressor, 184–185
gas cooling, 198
installation, tuning out difficult torsional vibration problem in (case study), 327, 328, 329f
integral, 181, 182f, 185
monitoring system, 197
optimization, 200–201
overview, 179
packings, 193, 194f
performance, 247–254
discharge temperature, 251
flow (capacity), 245, 247–249
general, 247
maps, 251–254
piston speed, 254
power, 249–251
physical operation, 198–200
pressure–volume characteristic, 270, 271f
pulsation generated by, 485–487, 486f–487f, 523–525, 523f–525f
rod loading, 201–202
rotordynamics and, 552–553, 552f, 553f
running gear, 181, 182–183
separable, 181, 182f, 183, 184–185
start-up and shutdown, 197
types, 179–181
valves, 187, 189–192, 193f
Reciprocating pumps, 121–124
acceleration head, 171–172
advantages, 123
discharge piping, 129
family of, 101f
flow characteristics, 171, 172f
piston pumps, 122–123
plunger pumps, 121–122
power plunger pumps, 124
pulsation generated by, 485–487, 486f–487f
selection charts, 173–174
pump power calculations, 174–175
theoretical pump volume calculation, 174
speed rating, 126–127, 127f
station piping design for, 127, 128f
suction piping, 127–128
suction vessel, 129
torque characteristics, 126, 127f
type, 99
Re-circulation in centrifugal pumps, 164–166
Recycle system around compressors arranged in series, 409–410, 409f, 410f–411f
Recycling, compressor stations, 93
Redlich-Kwong EOS, 241
RefProp, mixture property program, 243, 264
Regular internally-pressurized fluid film bearings, 560
Reliability; see also Dependability, pipeline system concept, 11
standardization, 11
Reliability, Availability and Maintainability (RAM) models, 15–16, 17f
Relief valve dynamics, 427, 429–444
example, 436–441, 438f–441f
field tests, 441–444, 442f, 443f–444f
pilot-operated relief valves, 429–434, 430f, 431f
solution technique, 434–436
Remote sensing pop-action pilot PRVs, 526
Resistance coefficient, 25–26
Resonance
for fixed-speed machine, 535f
for variable speed machine, 536f
Restaging, 150, 152f
Rexnord, 325
Reynolds numbers (Re), 24, 26, 45
defined, 260
noise suppression during blowdown, 484, 496–497
Rising characteristic curve, 146, 147f
Risk assessment, pipeline system, 7–9
Rod loading, reciprocating compressors, 201–202, 271
Rod reversal, defined, 201
Rolls Royce, 281, 287, 289f, 290
Rotary compressors, types, 229
Rotary pumps, 102f, 119–121, 122f
capability range, 120t
curve, system head curves and, 170–171
damage caused by hard contaminant, 121f
family of, 102f
flow/capacity control, 121
inadequate suction conditions correction, 173
performance chart, 167, 168f, 169f
power and efficiency, 169–170
pulsation and pressure relief, 120–121
slips and clearance, 170
system configuration, 122f
types, 99, 119
Rotating equipments, 536–563
balancing, 561–563, 562f–563f
general, 536–537
lateral rotordynamics, 537–540, 538f–540f
specific machinery considerations for rotordynamics, 551–561
stability, 540–541, 541f
torsional rotordynamics, 541–551, 542f–544f, 546f, 548f
Rotating stall, see Surge
Rotordynamics
balancing and, 561–563, 562f–563f
bearings and, 560–561
centrifugal compressors and, 551–552
centrifugal pumps, 553–554
gas/power turbines, 554
gearboxes and couplings, 558–560, 559f, 560f
lateral, 537–540, 538f–540f
motors, 554–558, 556f, 557f
reciprocating compressors, 552–553, 552f, 553f
stability, 540–541, 541f, 561–563
torsional, 541–551, 542f–544f, 546f, 548f
Rotors, 285
inertia, on ESD, 393, 394f, 395f
Running gear, 181, 182–183
S
Safety, pipeline systems, 6–17
dependability and, 11–17
process safety, 6–11
Safety systems, compressor station, 96
SCADA, see Supervisory control and data acquisition (SCADA) system
Scavenge pumps, 292
Screech tones, 603–604
Screw compressors, 229–231
design, 229, 230f
operation, 230–231
Scrubbers, compressor station, 90–91
Sealing system, centrifugal compressors, 205–209, 213–220
dry gas seals, 216–219
emerging gas seal technology, 220
general, 213–214
wet oil seals, 214–215
Seal-less centrifugal pump type, 99
Seal(s)
IGCC, 233–234
oil, 215
Selection, performance of centrifugal compressors, 260–261
Self-excited vibration, 551
Separable reciprocating compressor
frame, 184–185
running gear, 181, 182f, 183
Series configuration
of compressor for gas compression, 76
pumping piping, 36, 40f
of pumps in liquid pipeline system, 29
standby unit, 79, 80f
Series operation, compressors, 275–276
Series-parallel configuration
of compressor for gas compression, 76
pump station piping, 36, 37f
Service Factor, 324
SG, see Specific gravity (SG)
Shaft(s)
arrangements, for gas turbines, 284–285
centrifugal compressors, 206
Shaking forces, standards and guidelines, 509–510
Shared VFDs, 314
Shear rate, 21, 22f
Shutdown, 197, 276
Shutdown control
ESD, 94, 95f
SSDL, 94, 95f
SSDR, 93, 94f
Shutoff, rise to pipeline design and, 23
Side-branch mufflers, 491
Siemens, 281
Simple compression systems, 372–374, 372f–373f, 374f
Single-source pulsation, 520–521, 520f–521f
Single-stage pump, 106
Single-suction pump, 106
SI units, 175
Sizing, performance of centrifugal compressors, 260–261
Slab gate valves, 44
Small-bore attachments
mechanical analysis of piping systems and, 569–572
Small bore connections (SBCs), 569–572
defined, 569
definition chart for different pipe sizing, 569f
design best practices, 571–572
failures of, 569, 571
general, 569–571
guidelines for screening, 572
isolating, 572
orientation of, 571
small bore and mainline connection and piping definitions, 570f
small-bore attachments on a reciprocating compressor, 570f
Snubbers, 500–502, 501f
Soave-Redlich-Kwong EOS, 241
Soft couplings
elastomeric, 327
steel-spring, 327
Solar bearing, 209, 210f
Solar Centaur, 287, 297
Solar low NOx (SoLoNOx), 296
Solar Saturn, 281, 282f
Solar Turbines, 281, 283
Solids concentrations
pump selection and, 23
Solution techniques, 487–488
dynamic instabilities, 382–386, 382f–383f, 384f, 385f, 386f
pumping systems, 341–342, 342f
relief valve dynamics, 434–436
Sound
intensity, 594–595
speed in liquids piping, 499–500, 501f
Sound pressure level (SPL), 594–597, 608, 611f
Sour oil, 215
Spark-ignited engines, 320
Specific gravity (SG)
API gravity and, relationship, 133–136
pipeline design and, 22–23
pump selection and, 23
of some hydrocarbon liquids, 136f
Specific heat
pipeline design and, 21
ratio of, 240–241
Specific speed, efficiency and, 143–145, 146f
Speech Interference Level (SIL), 598
Speed drives, variable, 310, 311–315
fluid coupling, 314, 315f
VFD, 310, 311–314
Speed of sound in liquids piping, 499–500, 501f
Speed rating, reciprocating pumps, 126–127
Spoilers, for pulsation suppression at source, 493–496, 494f–496f
Spring loaded PRVs, 526
SSDL, see Station shutdown lock-out (SSDL)
SSDR, see Station shutdown restartable (SSDR) mode
Stability
defined, 260
rotordynamics, 540–541, 541f, 561–563
Stable characteristic curve, 147
Stall, 221–222
Standards
API, see American Petroleum Institute (API)
compressor, 96–97
couplings, 329–330
design, see Design standards
pump and system design, 177–178
Standards and guidelines, 502–518
API 618 Standard, 502–510, 503f
API 674 Standard, 510–512
shaking forces arising from pressure pulsation, 512–513, 512f–513f
Standby units, 78–80, 81f
Startup, 197, 274–275
Static head
liquid pipeline systems, 24
velocity and, 25
Station bypass valve, 34, 35f, 36
Station check valve, 35f, 36
Station discharge valves, 34, 35f, 36, 44
Station isolation valves, 35f, 36
Station level control, compressor stations, 92
Station shutdown lockout (SSDL), 94, 95f
Station shutdown restartable (SSDR) mode, 93, 94f
Station suction valve, 34, 35f, 36
Stators, defined, 285
Steam condensation-induced water hammer, 359–361, 360f
Steam injection, 296
Steel-spring soft couplings, 327
Steep characteristic curve, 146, 147f
Stonewall, 259, 272
Stress
mechanical analysis of piping systems, 564–566, 565f, 566f, 567f
Styrene transfer system, 361–365, 361f–362f, 363f, 364f–365f, 366f
Subsynchronous vibration, 551
Suction lift, piping design, 34
Suction piping for reciprocating pumps, 127–128
size and design, 34
Suction pulsation dampeners, 125–126
Suction specific speed, 165–166
Suction throttling, 93
Suction valve, 187, 189f, 190, 191, 192f
Suction vessel, for reciprocating pumps, 129
Sump system, 34
Supercharging, defined, 320
Supercompressibility, defined, 238
Supersonic ejectors; see also Two-stage supersonic ejectors
in operation, 631–634, 632f, 633f, 633t, 634t
primary challenges of, 625–626
1st stage, 625–632, 625f, 626f, 627f, 630f, 631f, 632
1st stage supersonic ejector, 625–632, 625f, 626f, 627f, 630f, 631f, 632
two stages of ejector, 626–628, 626f–628f
Supervisory control, compressor stations, 92
Supervisory control and data acquisition (SCADA) system, 93
Surge
air compressor, 286–287
on compressor, 221–222
control system, 222–223
dynamic compressors, 272
operating range by, 260
protection for centrifugal compressors, 270
relief valves, 59, 60f
vessel, 59
Survey
noise, compressor and pump stations, 608–610, 609f, 610f, 612–623
Swing type check valves; see also Check valve dynamics
description, 411–412, 412f
dynamic behavior of, 413–417, 414f, 416f–417f
slamming characteristics, 417–421
Synchronous motors, 308–310
System characteristics, compressors, 267–276
adjustments, 272–274
comparison, 270, 271f
curves, 267–270
general, 267
operating considerations, 274–276
parallel operation, 276
series operation, 275–276
shutdown, 276
startup, 274–275
operating limitations, 271–272
System curve, centrifugal pumps, 140, 141f
System head, 131–133
vs. specific gravity, pumps delivering the same pressure, 133f
System head curves
of centrifugal pumps, 140, 141f
liquid pipeline systems, 24–26
pump versus pipeline, 132f

T
“Tail effect,” 45
Tangency rule, 598
Taurus, 281
TB Woods flexible disk couplings, 325
TCO, see Total cost of ownership (TCO)

Technical Committee 56 (TC56), 11
Temperature effect, pipeline design, 21
Temperature profiles, gas pipeline, 72f
Temperature rise in centrifugal pumps, 163–164
Terminal, liquid pipeline systems, 4
Terminal piping design, 52–61
components of, 54
layout of, 54
pressure surges, 55–56
transient analysis, 56–58
Testing, performance, centrifugal compressors, 261–262
Test tolerances pipeline design and, 23
Thermal analysis mechanical analysis of piping systems and, 583–584
Thermal efficiency, 331, 332, 334
Threats (bowtie diagram), 8
Throttle element acoustic transfer matrix for, 472–478, 473f, 474f, 475f, 476f, 477f
flow-generated pulsation from, 480–482
Throttling, suction and discharge, 272
Throttling elements flow-generated pulsation from, 480–482, 481f–482f
Thrust force, in two-stage centrifugal compressor, 206, 208f
Tilting pad bearings, 209, 210, 211f, 212f
Titan, 281
Top Event (bowtie diagram), 8
Torque characteristics, reciprocating pumps, 126, 127f
Torque coefficient, centrifugal pumps, 348, 349f, 350t–351t
Torsional analysis, 324, 541–543, 546–548, 547f–548f
torsional modeling, 543–546, 545f, 546f
torsional solutions, 548–551, 549f, 550f
Torsional solutions, 548–551, 549f, 550f
Torsional vibration (TV), 555–556
problem in reciprocating compressor installation, case study, 327, 328, 329f
Total cost of ownership (TCO), 15
Totally enclosed fan-cooled motor cooling, 310, 311f
Totally enclosed forced ventilation, 310
Totally enclosed water-to-air cooled motor cooling, 310, 311f
TransCanada Pipelines, 281
Transfer matrix (TM)
mean flow on acoustic TM for pipe element, 467–468
Transient analysis drawbacks, 57
objectives of, 56–57
Transmission, 6
Turbine inlet temperatures (TITs), 280, 301
Turbines
gas, 554
power, 554
Turbocharging, defined, 320
Twin-spool gas generator, 285
Two-stage supersonic ejectors, 626–628, 626f–628f
performance of integrated, 629–632, 629f–631f, 631t
Typical acceleration, 534

U
Unbalanced forces
mechanical analysis of piping systems, 566–569, 568f
Unburned hydrocarbons (UHC), 295
Uncontrolled devices, 613
Uncontrolled engines, 613
Under-compression discharge pressure, 231
Unit auxiliary systems, compressor station, 92
Unit control systems, compressor station, 92–95
“Universal velocity profile,” 46
Unloaders, types of, 187, 188f
Unstable characteristic curve, 147
U.S. Federal Interagency Committee on Urban Noise (FICUN), 599
Usage scenario for pipeline stations (case study), 81–85

V
Value
of dependability, 12–14
ValveAlert™, 197
Valve(s)
bleed, 287
closure, pressure surge and, 56
discharge, 187, 189f, 190, 191, 192f
plate, 187, 189f, 190f
pneumatic clearance, 187, 188f
poppet, 187, 189f, 190, 191f
pressure control, 213
pressure relief, 213
reciprocating compressors, 187, 189–192, 193f
selection, piping design, 44
suction, 187, 189f, 190, 191, 192f
Van der Waals mixing rule, 241
Vaneless diffusers, 261
Vaness guide, see Guide vanes
IGVs, 233, 287, 288
VSVs, 287–288
Vapor pressures
cavitation and, 155, 156f
pump selection and, 23
Vapor voids in liquids, 500, 501f
Variable compressor geometry, 287–288
Variable frequency drive (VFD), 310, 311–314, 315
Variable speed drives, 310, 311–315
fluid coupling, 314, 315f
VFD, 310, 311–314
Variable stator vanes (VSVs), 287–288
Variable volume clearance pocket (VVCP), 186–187, 199–200
Velocity limitations, piping design, 34
Vent gas
recovering loss from dry gas seals, 624–634
Vertical booster pump, 104f
Vertical inline pumps, 116f,
117–118
Vertical pump (dry pit-type), 106
Vertical pump types, 99
Vertically suspended pump, 518
VFD (variable frequency drive), 310, 311–314, 315
VFD-controlled motors reciprocating compressors driven by, 555–558
Vibration, 533–536
amplitude, 533
basic aspects of, 533–536,
534f, 535f
defined, 533
forced, 551
mechanical analysis of piping systems, 564–566,
565f, 566f, 567f
MNF and resonance, 535–536,
535f–536f
overview, 533–535, 534f, 535f
self-excited, 551
subynchronous, 551
torsional, 555–556
Vibration amplitude, 533
Vibration velocity, 534
Viscosity
pipeline design and, 21–22, 23f
pump selection and, 23–24
Viscous liquids
centrifugal pumps and, 160–163
performance correction chart, 161, 162f
Volume model, station and gas pipeline blowdown, 446–449
analytical solution, 446–448
numerical solution, 448–449
Volumetric efficiency (VE), 199,
200, 248–249
Volute chipping, impeller, 150, 153f
Volute inserts, impeller, 150, 153f
Volute pump, 106
VSVs (variable stator vanes), 287–288
VVCP (variable volume clearance pocket), 186–187, 199–200
W
Wafer type check valves, dynamics of, 424–425, 424f
Waste heat recovery, gas turbines, 306–307
Water cooling, 70
Water hammer, 357–358
steam condensation-induced, 359–361, 360f
Weather-protected type enclosure, 310
Weather protection, compressor station, 95
Wet oil seals, 214–215
What if/checklists, 8
Wheel curve, defined, 255
Wobbe index, 294, 297
Z
Zero emissions seal (ZES), 220