1 Introduction to Pipeline Systems Available to Purchase
-
Published:2008
Download citation file:
Pipelines affect the daily lives of people in most parts of the world. Modern-day life is based on structures in which energy fulfills a prevailing role. Oil and gas are the major participants in this energy supply. However, use of other forms of energy (such as hydrogen, biomass, etc., Fig. 1-1) [1] have continued and will continue to dominate energy usage in the future, depending on acceptability, safety, technical, and economic issues. However, pipelines are means by which most of these forms of energy are transported. It is of no coincidence that wherever there is the largest pipeline network, there is also the highest standard of living and technological progress.
Compared with other forms of transport, pipelines allow a more continuous, stable, and high-capacity supply of natural gas energy to reach end-users. Pipeline transportation has the advantages of being well established, cost-effective, and readily expandable. Its technology is well understood. The capital cost of a pipeline project is largely a function of its diameter and length, although other factors such as geography and topography are also significant. Operating expenditures and self-consumption of product are relatively minor and predictable. Economic feasibility of a pipeline is limited by variables such as volumes to be transported, supply-demand distance relationships, operating pressure, projected reserve life, and various risk factors. These limitations are more restrictive offshore than onshore.
The relative transportation cost for various petroleum products is depicted in Fig. 1–2. Although pipelines were the most cost-effective mode of energy transportation, it can be inferred from Fig. 1–2 that cost of energy transportation by pipeline is distance- and location (offshore versus onshore)-dependent [2].
Pipelines are mostly buried. In virtual silence, pipelines supported by pumping and compression stations carry billions of cubic meters of our energy needs. Unattended pumping stations push oil and petroleum products in large volumes and under high pressure. Similarly, natural gas transmission systems supported by compressor stations move large volumes of gas to various destinations