Skip to Main Content
ASME Press Select Proceedings

Proceedings of the 10th International Symposium on Cavitation (CAV2018)

Editor
Joseph Katz
Joseph Katz
Search for other works by this author on:
ISBN:
9780791861851
No. of Pages:
1108
Publisher:
ASME Press
Publication date:
2018

We use a coupled Eulerian-Lagrangian method to simulate the dynamics of a spherical bubble cloud with various void fractions excited by high-amplitude ultrasound pulses. We consider two cases: a single cycle of a sinusoidal waveform whose wavelength is large compared to the cloud diameter, and multiple cycles with a short wavelength. For the long wavelength, bubble cloud dynamics are nearly spherically symmetric. Bubbles near the periphery grow more than the those close to the center, and the collapse of bubbles propagates inward from the periphery of the cloud. The structure and the dynamics of the cloud are scaled with the cloud interaction parameter introduce by d’Agostino and Brennen. It is shown that polydispersity does not significantly alter the cloud dynamics. In the short wavelength case, the clouds develop an anisotropic structure in the direction of the incident wave propagation. Over a wide range of the void fraction, the distal side of the cloud is shielded from the incident wave and bubbles grow less. As characterized by the center of volume of the cloud, the anisotropy is similar over the range of volume fractions considered. The results of the study can be used to characterize the acoustic cavitation in ultrasound therapies.

Introduction
Problem Statement
Numerical Setup
Results and Discussion: Long Wavelength Cases
Results and Discussion: Short Wavelength Case
Conclusion
Acknowledgement
References
This content is only available via PDF.
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal