Skip to Main Content
ASME Press Select Proceedings

Proceedings of the 10th International Symposium on Cavitation (CAV2018)

Editor
Joseph Katz
Joseph Katz
Search for other works by this author on:
ISBN:
9780791861851
No. of Pages:
1108
Publisher:
ASME Press
Publication date:
2018

Francis turbines operating at part load conditions typically experience a cavitation vortex rope immediately at the runner outlet. As the compliance of this cavitation flow is much higher than the one in cavitation-free conditions, a decrease in the value of the eigen frequencies of the hydraulic circuit is observed. One of the eigen frequencies can eventually match the frequency of the vortex precession, which acts as an excitation source for the hydraulic system, inducing strong pressure pulsations and output power swings. To predict such undesirable resonance conditions in hydropower plants, the cavitation compliance in the draft tube cone can be identified beforehand at the model scale. This paper presents the identification of the cavitation compliance on a reduced scale model of a Francis turbine over a wide range of part load operating conditions, for different Thoma and Froude numbers. The first eigen frequency of the test rig is firstly identified by modal analysis. The cavitation compliance is then defined by adjusting a 1-D numerical model of the test rig to match this first eigen frequency. These compliance results could then be transposed to the prototype scale, enabling the prediction of the first eigen frequency of the hydropower plant in any part load condition.

Introduction
Resonance in Part Load Conditions
Experimental Setup and Cavitation Compliance Determination
Swirl Number
Measurements Results and Discussion
Conclusion
Acknowledgements
Bibliography
This content is only available via PDF.
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal