Skip to Main Content
ASME Press Select Proceedings

Proceedings of the 10th International Symposium on Cavitation (CAV2018)

Editor
Joseph Katz
Joseph Katz
Search for other works by this author on:
ISBN:
9780791861851
No. of Pages:
1108
Publisher:
ASME Press
Publication date:
2018

In this study, a nonlinear optimization method, which is coupled with either a panel method or a vortex lattice method, is used to design open propellers in uniform, circumferentially averaged or non-uniform inflow. A B-spline geometry with 4 × 4 control points is used to ensure that the propeller blade is accurately defined with fewer parameters. The optimization objective is to maximize the efficiency of the propeller while satisfying the given propeller thrust, and different cavity area or pressure constraints are applied. The influence of those constraints are studied, and propeller geometries are designed in different cases. The optimal efficiency as a function of the thrust coefficients are compared with those from other references, and the optimal circulations from this method are compared with those predicted from the lifting line optimization theory. It is shown that this method satisfies the optimization objectives and can be used in the practice of designing cavitating propellers.

Introduction
Methodology
Results and Discussion
Conclusion
Acknowledgement
References
This content is only available via PDF.
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal