Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings

Intelligent Engineering Systems through Artificial Neural Networks Volume 18

Editor
Cihan H. Dagli
Cihan H. Dagli
Search for other works by this author on:
ISBN-10:
0791802823
ISBN:
9780791802823
No. of Pages:
700
Publisher:
ASME Press
Publication date:
2008

Photo-plethysmography (PPG) is frequently used in research on microcirculation of blood. It is a non-invasive procedure and takes minimal time to be carried out. Usually PPG time series are analyzed by conventional linear methods, mainly Fourier analysis. These methods may not be optimal for the investigation of nonlinear effects of the heart circulation system like vasomotion, autoregulation, thermoregulation, breathing, heartbeat and vessels. The wavelet analysis of the PPG time series is a specific, sensitive nonlinear method for the in vivo identification of heart circulation patterns and human health status. This nonlinear analysis of PPG signals provides additional information which cannot be detected using conventional approaches. The wavelet analysis has been used to study healthy subjects and to characterize the health status of patients with a functional cutaneous microangiopathy which was associated with diabetic neuropathy. The non-invasive in vivo method is based on the radiation of monochromatic light through an area of skin on the finger. A Photometrical Measurement Device (PMD) has been developed. The PMD is suitable for non-invasive continuous on-line monitoring of one or more biologic constituent values and blood circulation patterns.

Abstract
Introduction
Materials and Methods
Application and Results
Conclusions
Nomenclature
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal