Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings
Intelligent Engineering Systems through Artificial Neural Networks, Volume 16
Editor
Cihan H. Dagli
Cihan H. Dagli
Search for other works by this author on:
Anna L. Buczak
Anna L. Buczak
Search for other works by this author on:
David L. Enke
David L. Enke
Search for other works by this author on:
Mark Embrechts
Mark Embrechts
Search for other works by this author on:
Okan Ersoy
Okan Ersoy
Search for other works by this author on:
ISBN-10:
0791802566
No. of Pages:
1000
Publisher:
ASME Press
Publication date:
2006

This paper presents a multi-agent financial market simulation. The market is composed of traders who have different initial trading biases to take a specific action. Traders not only buy or sell an asset, but also cover their position in the following periods. Trading strategies are generated using stock price movements and other technical indicators. An XCS learning classifier system is used as an individual learning mechanism to implement the evolution of trader strategies. The results reveal that initial trader bias affects market price dynamics and evolutionary learning prevents the market from crashing, stabilizing the system. Covering mechanisms clearly illustrate the intermediate and minor trend following behaviors of traders. The results contribute to the understanding of potential deviations from efficient market equilibrium.

Abstract
Introduction
Market Structure
Experiments and Results
Conclusions and Future Work
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal