Skip to Main Content
ASME Press Select Proceedings

Intelligent Engineering Systems through Artificial Neural Networks, Volume 16

Editor
Cihan H. Dagli
Cihan H. Dagli
Search for other works by this author on:
Anna L. Buczak
Anna L. Buczak
Search for other works by this author on:
David L. Enke
David L. Enke
Search for other works by this author on:
Mark Embrechts
Mark Embrechts
Search for other works by this author on:
Okan Ersoy
Okan Ersoy
Search for other works by this author on:
ISBN-10:
0791802566
No. of Pages:
1000
Publisher:
ASME Press
Publication date:
2006

Prototype based clustering and classification algorithms constitute very intuitive and powerful machine learning tools for a variety of application areas. They combine simple training algorithms and easy interpretability by means of prototype inspection. However, the classical methods are restricted to data embedded in a real vector space and thus, have only limited applicability to complex data as occurs in bioinformatics or symbolic areas. Recently, extensions of unsupervised prototype based clustering to proximity data, i.e. data characterized in terms of a distance matrix only, have been proposed. Since the distance matrix constitutes a universal interface, this opens the way towards an application of efficient prototype based methods for general data. In this contribution, we transfer this idea to supervised scenarios, proposing a prototype based classification method for general proximity data.

This content is only available via PDF.
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal