Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings

Intelligent Engineering Systems through Artificial Neural Networks, Volume 16

Editor
Cihan H. Dagli
Cihan H. Dagli
Search for other works by this author on:
Anna L. Buczak
Anna L. Buczak
Search for other works by this author on:
David L. Enke
David L. Enke
Search for other works by this author on:
Mark Embrechts
Mark Embrechts
Search for other works by this author on:
Okan Ersoy
Okan Ersoy
Search for other works by this author on:
ISBN-10:
0791802566
No. of Pages:
1000
Publisher:
ASME Press
Publication date:
2006

A new exploratory self-adaptive derivative free training algorithm is developed. It only evaluates error function that is reduced to a set of sub-problems in a constrained search space and the search directions follow rectilinear moves. To accelerate the training algorithm, an interpolation search is developed that determines the best learning rates. The constrained interpolation search decides the best learning rates such that the direction of search is not deceived in locating the minimum trajectory of the error function.

The proposed algorithm is practical when the error function is ill conditioned implying that the Hessian matrix property is unstable, or the...

Abstract
1 Exploratory Training
2 Exploratory Training Algorithm
3 Convergence of the Training Method
4 Analysis with the XOR Problem
5 Training Results
6 Discussions
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal